文档章节

TensorFlow学习系列(六):变量更新和控制依赖

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:22
字数 2243
阅读 5
收藏 0

这篇教程是翻译Morgan写的TensorFlow教程,作者已经授权翻译,这是原文


目录


TensorFlow学习系列(一):初识TensorFlow

TensorFlow学习系列(二):形状和动态维度

TensorFlow学习系列(三):保存/恢复和混合多个模型

TensorFlow学习系列(四):利用神经网络实现泛逼近器(universal approximator)

TensorFlow学习系列(五):如何使用队列和多线程优化输入管道

TensorFlow学习系列(六):变量更新和控制依赖


在本文中,我们将围绕变量更新和控制依赖讨论更深层次的 TensorFlow 能力。

变量更新

到目前为止,我们已经将变量专门用于我们模型中的一些权重,这些权重将根据优化器的操作进行更新操作(如:Adam)。但是优化器并不是更新变量的唯一方法,还有别的一整套更高级的函数可以完成这个操作(你将再次看到,这些更高级的函数将作为一种操作添加到你的图中)。

最基本的自定义更新操作是 tf.assign() 操作。这个函数需要一个变量和一个值,并将值分配给这个变量,非常简单吧。

让我们来看一个例子:

import tensorflow as tf

# We define a Variable
x = tf.Variable(0, dtype=tf.int32)

# We use a simple assign operation
assign_op = tf.assign(x, x + 1)

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())

  for i in range(5):
    print('x:', sess.run(x))
    sess.run(assign_op)

# outputs:
# x: 0
# x: 1
# x: 2
# x: 3
# x: 4

这里没有什么特别地,就跟任何其他操作一样:你能在会话(session)中调用它,并且操作确保会发生变量更新。

我们将这个操作(assign)跟通常的优化器 train_op 进行比较。两者都做同样的事情:变量更新。唯一的区别是,优化器在进行变量更新之前,需要做大量的微积分操作。

TF 有许多的函数来支持手动更新变量,你可以在 TensorFlow 的函数帮助页面进行查看,很多的操作都可以被一些张量操作来取代,然后调用 tf.assign 函数来实现更新操作,但在一些情况下,这将会是非常麻烦的一件事。所以,TensorFlow 为我们提供了两种更新操作:

我不会深挖这些函数的功能。其中一些函数可能你现在不是很理解,我的建议是你可以通过一个很简单的脚本来学习这些函数,然后再写入你的实际模型中,这种方法会帮助你节约很多的调试时间。

最后再谈一下参数更新:如果我们想改变参数的维度呢?例如,在参数中多添加一行或者一列?到目前为止,我们一直在谈论 “assign” 这个概念,并没有涉及到维度的改变。

这个问题是可以被解决的,但是比较棘手:

  • tf.Variable 函数中有一个参数 validate_shape 默认是设置为 True 。它阻止你对参数进行维度更新,所以我们必须将这个参数设置为 False

  • 这个参数也存在于 tf.assign 函数中,所以我们也必须将这个参数进行关闭。

让我们看个例子:

import tensorflow as tf

# We define a "shape-able" Variable
x = tf.Variable(
    [], # A list of scalar
    dtype=tf.int32,
    validate_shape=False, # By "shape-able", i mean we don't validate the shape so we can change it
    trainable=False
)
# I build a new shape and assign it to x
concat = tf.concat([x, [0]], 0)
assign_op = tf.assign(x, concat, validate_shape=False) # We force TF, to skip the shape validation step

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())

  for i in range(5):
    print('x:', sess.run(x), 'shape:', sess.run(tf.shape(x)))
    sess.run(assign_op)

# outputs:
# x: [] shape: [0]
# x: [0] shape: [1]
# x: [0 0] shape: [2]
# x: [0 0 0] shape: [3]
# x: [0 0 0 0] shape: [4]

所以这也不是很难,对吧!让我们继续吧。

控制依赖

我们可以更新变量,但是如果你要在更新当前变量之前更新别的变量,那么这会造成一个严重问题:你需要调用很多次的 sess.run 来满足这个需求。这非常不实用,也没有效率。请记住,我们将参数留在图中更多,那么效率会更高。

那么有什么办法吗?当然有,那就是控制依赖。TF 提供了一组的函数来处理不完全依赖情况下的操作排序问题(就是哪个操作先执行的问题)。

让我们从最简单的例子开始:我们先构造一个拥有一个变量(Variable)和一个占位符(placeholder)的图,用来执行一个乘法操作。在每次进行乘法之前,我们需要对参数(Variable)进行更新操作,每次加一。那么,我们在实际的编程中怎么做到这一点呢?

如果我们开始天真的方式,只需要添加一个 tf.assign 调用就可以了,那么我们将得到如下结果:

import tensorflow as tf

# We define our Variables and placeholders
x = tf.placeholder(tf.int32, shape=[], name='x')
y = tf.Variable(2, dtype=tf.int32)

# We set our assign op
assign_op = tf.assign(y, y + 1)

# We build our multiplication (this could be a more complicated graph)
out = x * y

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())

  for i in range(3):
    print('output:', sess.run(out, feed_dict={x: 1}))

# outputs:
# output: 2
# output: 2
# output: 2

从结果中我们可以看出,这种操作方式并不 work :我们的变量(Variable)并没有增长,输出结果一直都是 2

如果你仔细查看上面的代码,并且在脑中构建这个图,你就可以清楚的看到,如果要计算 xy 之间的乘法,该图不需要计算 assign_op :因为如何对 y 进行更新操作,已经拥有了很好的定义。

为了解决这个问题,使得 y 能进行更新,我们需要一种方法来强制 TF 运行 assign_op 操作。

这种操作确实是存在的!我们可以添加一个控制依赖来做这件事。这样就像 Graph 或者 Variables 一样,我们能将它和 Python 语句一起使用。

让我们来看一个例子:

import tensorflow as tf

# We define our Variables and placeholders
x = tf.placeholder(tf.int32, shape=[], name='x')
y = tf.Variable(2, dtype=tf.int32)

# We set our assign op
assign_op = tf.assign(y, y + 1)

# We build our multiplication, but this time, inside a control depedency scheme!
with tf.control_dependencies([assign_op]):
    # Now, we are under the dependency scope:
    # All the operations happening here will only happens after 
    # the "assign_op" has been computed first
    out = x * y

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())

  for i in range(3):
    print('output:', sess.run(out, feed_dict={x: 1}))

# outputs:
# output: 3
# output: 4
# output: 5

一切都按照我们的想法进行工作了。TF 看到了我们设置的依赖关系,所以它在运行依赖关系里面的操作之前,它会运行 assign_op ,这里有一个可视化结果:

  • 在上图,图并不会去计算 assign_op

  • 在下图,控制依赖在计算乘法之前会强制图去计算 assign_op



一个陷阱

在前面我们讨论了如何去改变变量的维度。但是有一些地方需要注意,当我们使用控制依赖去改变变量维度时,那么我们进入了一个黑盒优化层面。

比如,你可以先查看一下这段代码:

import tensorflow as tf

# I define a "shape-able" Variable
x = tf.Variable(
    [], 
    dtype=tf.int32,
    validate_shape=False, # By "shape-able", i mean we don't validate the shape
    trainable=False
)
# I build a new shape and assign it to x
concat = tf.concat([x, [0]], 0)
assign_op = tf.assign(x, concat, validate_shape=False)

with tf.control_dependencies([assign_op]):
    # I print x after the assignment
    x = tf.Print(x, data=[x, x.read_value()], message="x, x_read:")
    # The assign_op is called, but it seems that print statement happens
    # before the assignment, that is wrong.

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(3):
        sess.run(x)

# outputs:
# x: []   , x_read:  [0]
# x: [0]  , x_read:  [0 0]
# x: [0 0], x_read:  [0 0 0]

让我们仔细看看这段代码:

  • 打印操作依赖于 assign_op ,它只能在 x 被更新之后计算。

  • 然而,当我们打印 x 的时候,它看起来好像没有更新。

  • 但实际上,由于我们可以使用特殊的 read_value 函数来获取 x 的真正值。

发生了什么事情??上述代码更像是一个BUG而不是一个好的功能,而且 TF 正在利用高速缓存来加速你的计算,但是这恰恰也是可能遇到的一个BUG,请小心这两点。

结束语

那么,我们怎么来使用这些新的性能呢?其中一点我想到的是,维度变化这个功能可以用在 NLP 问题中的句子长度不一问题,如果你在处理词向量问题时,遇到句子之间的长度不同,那么你不需要添加 <UNK> 之类的标志,直接改变维度就可以了。

注意:我不确定这个想法是否能产生好的效果,如果你做了实验,那么我很想听到实验结果,感谢!


Reference:

http://stackoverflow.com/questions/38994037/tensorflow-while-loop-for-training

https://github.com/tensorflow/tensorflow/issues/7782

本文转载自:http://www.jianshu.com/p/d96dc5fabd9b

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
TensorFlow 高效编程

TensorFlow 高效编程 原文:vahidk/EffectiveTensorflow 译者:FesianXu、飞龙 协议:CC BY-NC-SA 4.0 一、TensorFlow 基础 TensorFlow 和其他数字计算库(如 numpy)之间最明显的区别在于 ...

ApacheCN_飞龙
2018/07/11
0
0
TensorFlow 2.0 的核心功能将是“Eager Execution”

TensorFlow 2.0 是谷歌开源机器学习框架的下一个主要版本,将于 2018 年末推出其首个测试版。TensorFlow 是 Google 对机器学习和数据科学领域的贡献,是快速开发神经网络的一般框架。 尽管 ...

达尔文
2018/08/22
2.9K
5
实战Tensorflow之滑动平均模型

版权声明:请注明出处,可以随意转载 https://blog.csdn.net/qq_39521554/article/details/82859748 本篇文章参考《Tensorflow实战Google深度学习框架》一书 目的 在Tensorflow的教程里面,使...

刺客五六柒
2018/09/26
0
0
程序员精选:TensorFlow和ML前5名的课程

如果你对人工智能、数据科学和机器学习感到好奇,那么我相信你已经听说过Google的机器学习API ——TensorFlow,他们已经用它来为Google搜索开发Rank Brain算法。TensorFlow是最受欢迎的机器学...

【方向】
2018/08/25
0
0
Optimizer in Tensorflow

前言 写Optimizer系列文章,是因为去年2017年在华为做深度学习相关工作时,学习实现了许多基于tensorflow的optimizer的,开源了其中两个分布式的optimizer,并且合入了tf社区,还有个相关专利...

JxKing
2018/07/22
0
0

没有更多内容

加载失败,请刷新页面

加载更多

MySQL查询执行

当我们希望MySQL能够以更高的性能运行查询时,最好的办法就是弄清楚MySQL是如何优化和执行查询的。一旦理解了这一点,很多查询优化工作实际上就是遵循一些原则让优化器能够按照预想的合理方式...

Linux就该这么学
16分钟前
1
0
爱可生开源社区官网正式发布啦!

近期大事记 2018/12/31 DBLE年度报告发版 2019/01/07 DBLE 2.18.12.0 新版发布,修复 issue 60+ 2019/01/09 DBLE 2.18.12.0 Release Notes 详细解读 2019/01/15 DBLE Logo 首发 + DBLE 团队迎......

爱可生
24分钟前
1
0
【分布式缓存系列】Redis实现分布式锁的正确姿势

一、前言   在我们日常工作中,除了Spring和Mybatis外,用到最多无外乎分布式缓存框架——Redis。但是很多工作很多年的朋友对Redis还处于一个最基础的使用和认识。所以我就像把自己对分布式...

编辑之路
35分钟前
1
0
3.x 在Unix系统上面启动守护进程

12.14 在Unix系统上面启动守护进程 问题 你想编写一个作为一个在Unix或类Unix系统上面运行的守护进程运行的程序。 解决方案 创建一个正确的守护进程需要一个精确的系统调用序列以及对于细节的...

dragon_tech
35分钟前
2
0
ES6中的class

class Point {constructor(x, y, z) {this.x = x;this.y = y;this.z = z;}toString() {return `${this.x},${this.y}`}get prop() {return `获取的是get${this.z...

chinahufei
38分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部