文档章节

人工智能资料库:第18辑(20170127)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:22
字数 656
阅读 3
收藏 0

  1. 【代码】Sugar Tensor - A slim tensorflow wrapper that provides syntactic sugar for tensor variables

简介:

Sugar Tensor aims to help deep learning researchers/practitioners. It adds some syntactic sugar functions to tensorflow to avoid tedious repetitive tasks. Sugar Tensor was developed under the following principles:

  1. Don't mess up tensorflow. We provide no wrapping classes. Instead, we use a tensor itself so that developers can program freely as before with tensorflow.
  2. Don't mess up the python style. We believe python source codes should look pretty and simple. Practical deep learning codes are very different from those of complex GUI programs. Do we really need inheritance and/or encapsulation in our deep learning code? Instead, we seek for simplicity and readability. For that, we use pure python functions only and avoid class style conventions.

原文链接:https://github.com/buriburisuri/sugartensor


2.【代码】illustration2vec

简介:


illustration2vec (i2v) is a simple library for estimating a set of tags and extracting semantic feature vectors from given illustrations. For details, please seeour project pageorour main paper.

Demo

原文链接:https://github.com/rezoo/illustration2vec


3.【资料】30 Top Videos, Tutorials & Courses on Machine Learning & Artificial Intelligence from 2016

简介:


2016 has been the year of “Machine Learning and Deep Learning”. We have seen the likes of Google, Facebook, Amazon and many more come out in open and acknowledge the impact machine learning and deep learning had on their business.

Last week, I publishedtop videos on deep learning from 2016. I was blown away by the response. I could understand the response to some degree – I found these videos extremely helpful. So, I decided to do a similar article on top videos on machine learning from 2016.

原文链接:https://www.analyticsvidhya.com/blog/2016/12/30-top-videos-tutorials-courses-on-machine-learning-artificial-intelligence-from-2016/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+AnalyticsVidhya+%28Analytics+Vidhya%29


4.【博客】20+ hottest research papers on Computer Vision, Machine Learning

简介:

Computer Vision used to be cleanly separated into two schools: geometry and recognition. Geometric methods like structure from motion and optical flow usually focus on measuring objective real-world quantities like 3D "real-world" distances directly from images and recognition techniques like support vector machines and probabilistic graphical models traditionally focus on perceiving high-level semantic information (i.e., is this a dog or a table) directly from images.

原文链接:http://www.kdnuggets.com/2016/01/iccv-2015-21-hottest-papers.html


5.【课程】Neural Networks and Deep Learning

简介:

Neural networks have enjoyed several waves of popularity over the past half century. Each time they become popular, they promise to provide a general purpose artificial intelligence--a computer that can learn to do any task that you could program it to do. The first wave of popularity, in the late 1950s, was crushed by theoreticians who proved serious limitations to the techniques of the time. These limitations were overcome by advances that allowed neural networks to discover distributed representations, leading to another wave of enthusiasm in the late 1980s. The second wave died out as more elegant, mathematically principled algorithms were developed (e.g., support-vector machines, Bayesian models). Around 2010, neural nets had a third resurgence. What happened over the past 20 years? Basically, computers got much faster and data sets got much larger, and the algorithms from the 1980s--with a few critical tweaks and improvements--appear to once again be state of the art, consistently winning competitions in computer vision, speech recognition, and natural language processing. Below is a comic strip circa 1990, when neural nets reached public awareness. You might expect to see the same comic today, touting neural nets as the hot new thing, except that now the field has been rechristened deep learning to emphasize the architecture of neural nets that leads to discovery of task-relevant representations.

原文链接:https://www.cs.colorado.edu/~mozer/Teaching/syllabi/DeepLearning2015/


本文转载自:http://www.jianshu.com/p/1d7bcec8a258

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
美DARPA斥资20亿美元研发下一代AI技术

【概要】2018年9月7日,美国国防高级研究计划局(DARPA)宣布将投资20亿美元研发下一代人工智能(AI)技术。由于目前主流AI技术依赖于大量高质量的训练数据,很难适应不断变化的外部条件,有...

人工智能快报
昨天
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

docker update:更新一个或多个容器的配置

更新容器的配置 docker update:更新一个或多个容器的配置。 具体内容请访问:https://docs.docker.com/engine/reference/commandline/update/#options 语法:docker update [OPTIONS] CONTA...

lwenhao
30分钟前
1
0
unload事件

unload事件不触发的原因分析 1.代码位置不对,应该优先加载,不能放到回调函数中 2.浏览器不支持 3.最可能的原因,unload事件中触发的函数是一个异步执行的函数,浏览器是不允许在窗口关闭之后在...

狮子狗
42分钟前
1
0
DbForge Schema Compare for MySQL入门教程:如何连接到数据库

【dbForge Schema Compare for MySQL下载】 要创建连接: 1. 在“Connection” 工具栏上单击“New Connection”按钮 。 2. 在“Host” 框中输入主机名。 3. 在“Port” 框中输入端口信息。默...

Miss_Hello_World
45分钟前
1
0
公众号关联微信小程序

公众号关联小程序发送关联通知,对于推广小程序有着很大的帮助。所以问题来了,怎么做到在公众号关联小程序发送关联通知呢? 一:开发中遇到的问题 之前在开发过程中发现,公众号已经关联小程...

Code辉
57分钟前
1
0
并发编程基础之JMM学习摘要

一、JMM定义 Java内存模型即Java Memory Model(JMM),JMM决定一个线程对共享变量的写入何时对另一个线程可见(内存可见性),从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程...

狠一点
今天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部