文档章节

人工智能资料库:第5辑(20170109)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:21
字数 452
阅读 3
收藏 0

  1. 【博客】Matching Networks for One Shot Learning

简介:

This is a paper on one-shot learning, where we'd like to learn a class based on very few (or indeed, 1) training examples. E.g. it suffices to show a child a single giraffe, not a few hundred thousands before it can recognize more giraffes.

This paper falls into a category of "duh of course" kind of paper, something very interesting, powerful, but somehow obvious only in retrospect. I like it.

原文链接:https://github.com/karpathy/paper-notes/blob/master/matching_networks.md


2.【博客】Building Machine Learning Estimator in TensorFlow

简介:

The purpose of this post is to help you better understand the underlying principles of estimators in TensorFlow Learn and point out some tips and hints if you ever want to build your own estimator that’s suitable for your particular application. This post will be helpful when you ever wonder how everything works internally and gets overwelmed by the large codebase.

原文链接:http://terrytangyuan.github.io/2016/07/08/understand-and-build-tensorflow-estimator/


3.【资源】Deep Learning Resources

简介:

Deep learning resources that I marked here for reading and self-study.

原文链接:https://github.com/YajunHuang/DL-learning-resources


4.【博客】Unfolding RNNs —— RNN : Concepts and Architectures

简介:

RNN is one of those toys that eluded me for a long time. I just couldn’t figure out how to make it work. Ever since I read Andrej Karpathy’s blog post on the Unreasonable Effectiveness of RNNs, I have been fascinated by what RNNs are capable of, and at the same time confused by how they actually worked. I couldn’t follow his code for text generation (Language Modeling). Then, I came across Denny Britz’s blog, from which I understood how exactly they worked and how to build them. This blog post is addressed to my past self that was confused about the internals of RNN. Through this post, I hope to help people interested in RNNs, develop a basic understanding of what they are, how they work, different variants of RNN and applications.

原文链接:http://suriyadeepan.github.io/2017-01-07-unfolding-rnn/


5.【代码】Neural Variational Document Model

简介:

Tensorflow implementation of Neural Variational Inference for Text Processing.


This implementation contains:

  • Neural Variational Document Model
    1. Variational inference framework for generative model of text
    2. Combines a stochastic document representation with a bag-of-words generative model
  • Neural Answer Selection Model (in progress)
    1. Variational inference framework for conditional generative model of text
    2. Combines a LSTM embeddings with an attention mechanism to extract the semantics between question and answer

代码链接:https://github.com/carpedm20/variational-text-tensorflow


本文转载自:http://www.jianshu.com/p/cbd9c036cf9b

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
【Java每日一题】20170109

20170106问题解析请点击今日问题下方的“【Java每日一题】20170109”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序能否正常编译通过?(点击以下“【Java每日一...

weknow
2017/01/09
0
0
【Java每日一题】20170110

20170109问题解析请点击今日问题下方的“【Java每日一题】20170110”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序修改后输出结果是?(点击以下“【Java每日一...

weknow
2017/01/10
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Jmeter参数的AES加密使用

在Jmeter日常实践中,大家应该都遇到过接口传参需要加密的情况。以登陆为例,用户名和密码一般都需要进行加密传输,在服务端再进行解密,这样安全系数会更高,但在使用jmeter进行接口测试的时...

程序猿拿Q
20分钟前
1
0
MYSQL 日期函数 Date and Time Functions

Table 12.13 Date and Time Functions Name Description ADDDATE() Add time values (intervals) to a date value ADDTIME() Add time CONVERT_TZ() Convert from one time zone to another ......

_liucui_
26分钟前
1
0
Android代码混淆ProGuard工作原理简介

ProGuard能够对Java类中的代码进行压缩(Shrink),优化(Optimize),混淆(Obfuscate),预检(Preveirfy)。    1. 压缩(Shrink): 在压缩处理这一步中,用于检测和删除没有使用的类,字段...

SuShine
29分钟前
1
0
Idea 2018激活

教程地址: https://www.52pojie.cn/thread-781394-1-1.html 亲测可用

一个不正经的程序员
34分钟前
1
0
Android组件化开发实践和案例分享

目录介绍 1.为什么要组件化 1.1 为什么要组件化 1.2 现阶段遇到的问题 2.组件化的概念 2.1 什么是组件化 2.2 区分模块化与组件化 2.3 组件化优势好处 2.4 区分组件化和插件化 2.5 applicatio...

潇湘剑雨
35分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部