文档章节

人工智能资料库:第31辑(20170212)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:21
字数 611
阅读 2
收藏 0

  1. 【博客】Neural network learns to select potential anticancer drugs

简介:


Scientists from Mail.Ru Group, Insilico Medicine and MIPT have for the first time applied a generative neural network to create new pharmaceutical medicines with the desired characteristics. By using Generative Adversarial Networks (GANs) developed and trained to "invent" new molecular structures, there may soon be a dramatic reduction in the time and cost of searching for substances with potential medicinal properties. The researchers intend to use these technologies in the search for new medications within various areas from oncology to CVDs and even anti-infectives. The first results were submitted toОncotargetin June 2016 and spent several months in review. Since that time, the group has made many improvements to the system and engaged with some of the leading pharmaceutical companies.

原文链接:https://mipt.ru/english/news/neural_network_learns_to_select_potential_anticancer_drugs


2.【论文&视频】Active One-shot Learning

简介:

Recent advances in one-shot learning have produced models that can learn from a handful of labeled examples, for passive classification and regression tasks. This paper combines reinforcement learning with one-shot learning, allowing the model to decide, during classification, which examples are worth labeling. We introduce a classification task in which a stream of images are presented and, on each time step, a decision must be made to either predict a label or pay to receive the correct label. We present a recurrent neural network based action-value function, and demonstrate its ability to learn how and when to request labels. Through the choice of reward function, the model can achieve a higher prediction accuracy than a similar model on a purely supervised task, or trade prediction accuracy for fewer label requests.

原文链接:https://cs.stanford.edu/~woodward/papers/active_one_shot_learning_2016.pdf

视频链接:https://www.youtube.com/watch?v=CzQSQ_0Z-QU&feature=youtu.be


3.【博客】Reinforcement Learning for Photonic Engineering

简介:

The paper I will comment and review today here for this blog is quite special. It is about a topic I cherish – Photonics and Optical Engineering once was my career path… -, but it is double dose of reinforced engagement. It meshes Photonic Engineering with the techniques and conceptual framework of Reinforcement Learning. Reinforcement Learning is one of the most important and significant fields of development within the broader Machine Learning and Computer Sciencesubjects. Applied, as it is wonderfully described in this paper (that tastes more like a scientific and technological essay, and how close to my inclinations that could be…) to the topic of light transport simulation, it showed capacity to improve this photonic engineering challenge, possibly providing a path to further enhancement to rendering of images inComputer Graphics.

原文链接:https://theinformationageblog.wordpress.com/2017/02/10/reinforcement-learning-for-photonic-engineering/


4.【代码】Gaussian processes framework in python

简介:

A Gaussian process framework in python

原文链接:https://github.com/sheffieldML/GPy


5.【博客】Hyperparameter optimization with approximate gradient

简介:

Most machine learning models rely on at least one hyperparameter to control for model complexity. For example, logistic regression commonly relies on a regularization parameter that controls the amount of ℓ2ℓ2 regularization. Similarly, kernel methods also have hyperparameters that control for properties of the kernel, such as the "width" parameter in the RBF kernel. The fundamental distinction between model parameters and hyperparameters is that, while model parameters are estimated by minimizing a goodness of fit with the training data, hyperparameters need to be estimated by other means (such as a cross-validation loss), as otherwise models with excessive would be selected, a phenomenon known as overfitting.

原文链接:http://fa.bianp.net/blog/2016/hyperparameter-optimization-with-approximate-gradient/


本文转载自:http://www.jianshu.com/p/b6d53735241f

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
01/14
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
2018第四范式人工智能+新媒体论坛

2018首届人工智能+新媒体峰会将于11月6日在Blue Note Beijing举办。人民日报新媒体中心丁伟、原新华社新媒体中心总经理现中国搜索党委书记李俊、罗辑思维联合创始人李俊、凤凰新媒体客户端总...

第四范式
2018/10/25
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Cookie 显示用户上次访问的时间

import javax.servlet.ServletException;import javax.servlet.annotation.WebServlet;import javax.servlet.http.Cookie;import javax.servlet.http.HttpServlet;import javax.serv......

gwl_
今天
1
0
网络编程

第14天 网络编程 今日内容介绍  网络通信协议  UDP通信  TCP通信 今日学习目标  能够辨别UDP和TCP协议特点  能够说出UDP协议下两个常用类名称  能够说出TCP协议下两个常用类名称...

stars永恒
今天
1
0
二进制相关

二进制 众所周知计算机使用的是二进制,数字的二进制是如何表示的呢? 实际就是逢二进一。比如 2 用二进制就是 10。那么根据此可以推算出 5的二进制等于 10*10+1 即为 101。 在计算机中,负数以...

NotFound403
昨天
3
0
day22:

1、写一个getinterface.sh 脚本可以接受选项[i,I],完成下面任务: 1)使用格式:getinterface.sh [-i interface | -I ip] 2)当用户使用-i选项时,显示指定网卡的IP地址;当用户使用-I选项...

芬野de博客
昨天
2
0
Spring Cloud Alibaba基础教程:使用Nacos实现服务注册与发现

自Spring Cloud Alibaba发布第一个Release以来,就备受国内开发者的高度关注。虽然Spring Cloud Alibaba还没能纳入Spring Cloud的主版本管理中,但是凭借阿里中间件团队的背景,还是得到不少...

程序猿DD
昨天
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部