文档章节

人工智能资料库:第31辑(20170212)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:21
字数 611
阅读 1
收藏 0

  1. 【博客】Neural network learns to select potential anticancer drugs

简介:


Scientists from Mail.Ru Group, Insilico Medicine and MIPT have for the first time applied a generative neural network to create new pharmaceutical medicines with the desired characteristics. By using Generative Adversarial Networks (GANs) developed and trained to "invent" new molecular structures, there may soon be a dramatic reduction in the time and cost of searching for substances with potential medicinal properties. The researchers intend to use these technologies in the search for new medications within various areas from oncology to CVDs and even anti-infectives. The first results were submitted toОncotargetin June 2016 and spent several months in review. Since that time, the group has made many improvements to the system and engaged with some of the leading pharmaceutical companies.

原文链接:https://mipt.ru/english/news/neural_network_learns_to_select_potential_anticancer_drugs


2.【论文&视频】Active One-shot Learning

简介:

Recent advances in one-shot learning have produced models that can learn from a handful of labeled examples, for passive classification and regression tasks. This paper combines reinforcement learning with one-shot learning, allowing the model to decide, during classification, which examples are worth labeling. We introduce a classification task in which a stream of images are presented and, on each time step, a decision must be made to either predict a label or pay to receive the correct label. We present a recurrent neural network based action-value function, and demonstrate its ability to learn how and when to request labels. Through the choice of reward function, the model can achieve a higher prediction accuracy than a similar model on a purely supervised task, or trade prediction accuracy for fewer label requests.

原文链接:https://cs.stanford.edu/~woodward/papers/active_one_shot_learning_2016.pdf

视频链接:https://www.youtube.com/watch?v=CzQSQ_0Z-QU&feature=youtu.be


3.【博客】Reinforcement Learning for Photonic Engineering

简介:

The paper I will comment and review today here for this blog is quite special. It is about a topic I cherish – Photonics and Optical Engineering once was my career path… -, but it is double dose of reinforced engagement. It meshes Photonic Engineering with the techniques and conceptual framework of Reinforcement Learning. Reinforcement Learning is one of the most important and significant fields of development within the broader Machine Learning and Computer Sciencesubjects. Applied, as it is wonderfully described in this paper (that tastes more like a scientific and technological essay, and how close to my inclinations that could be…) to the topic of light transport simulation, it showed capacity to improve this photonic engineering challenge, possibly providing a path to further enhancement to rendering of images inComputer Graphics.

原文链接:https://theinformationageblog.wordpress.com/2017/02/10/reinforcement-learning-for-photonic-engineering/


4.【代码】Gaussian processes framework in python

简介:

A Gaussian process framework in python

原文链接:https://github.com/sheffieldML/GPy


5.【博客】Hyperparameter optimization with approximate gradient

简介:

Most machine learning models rely on at least one hyperparameter to control for model complexity. For example, logistic regression commonly relies on a regularization parameter that controls the amount of ℓ2ℓ2 regularization. Similarly, kernel methods also have hyperparameters that control for properties of the kernel, such as the "width" parameter in the RBF kernel. The fundamental distinction between model parameters and hyperparameters is that, while model parameters are estimated by minimizing a goodness of fit with the training data, hyperparameters need to be estimated by other means (such as a cross-validation loss), as otherwise models with excessive would be selected, a phenomenon known as overfitting.

原文链接:http://fa.bianp.net/blog/2016/hyperparameter-optimization-with-approximate-gradient/


本文转载自:http://www.jianshu.com/p/b6d53735241f

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
清华28日成立人工智能研究院,张钹院士出任院长

雷锋网(公众号:雷锋网)消息,清华大学于6月28日召开清华-谷歌 AI 学术研讨会,并同时举行清华大学人工智能研究院成立仪式,中国科学院张钹院士出任首任院长,同时聘请姚期智院士作为学术委员...

sanman
06/30
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

咕泡-Factory设计模式笔记

个人感悟: 设计模式都是处理复杂问题的,如果问题本身很简单,使用设计模式反而累赘,增加了开发的复杂性 遇到最简单的情况,直接 new 如果创建对象的过程简单,但是需要匹配不同情况,返回...

职业搬砖20年
16分钟前
0
0
Java中的锁分类

在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类。介绍的内容如下: 公平锁/非公平锁 可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲观锁 分段锁 偏...

Funcy1122
24分钟前
0
0
Ansible随机数

想为你的Ansible剧本取一个随机数?还想在接下来的运行中保持系统的等幂性?这里有一个答案。 假如,你要为一大批服务器设置cron任务,却不想让它们同时启动,你可以这样设置分钟数: minute...

大别阿郎
33分钟前
0
0
SpringCloud之服务注册中心Eureka

本系列介绍的配置均基于 Spring Boot 2.0.1.RELEASE 版本和 Spring Cloud Finchley.SR1 服务注册中心 Spring Cloud 已经帮我们实现了服务注册中心,我们只需要很简单的几个步骤就可以完成。 ...

熊小飞呀
今天
7
1
“Comparison method violates ...”异常的再现方法

前提条件:JDK8 代码: import java.util.ArrayList;import java.util.Collections;import java.util.Comparator;import java.util.List;public class Test { public stat......

hunterli
今天
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部