文档章节

人工智能资料库:第20辑(20170129)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:21
字数 637
阅读 3
收藏 0

  1. 【资料】AN ANNOTATED DEEP LEARNING BIBLIOGRAPHY

简介:

一大堆深度学习资料

原文链接:http://memkite.com/deep-learning-bibliography/#santos2014learning


2.【博客 & 代码】Nexar’s Deep Learning Challenge: the winners reveal their secrets

简介:

前段时间看了利用深度学习来识别交通灯的比赛,现在比赛的代码出来了,可以自己动手学习一下了。

原文链接:https://blog.getnexar.com/nexars-deep-learning-challenge-the-winners-reveal-their-secrets-e80c24147f2d#.qm82s6g39


3.【博客】Distributed Deep Learning with Apache Spark and Keras

简介:

In the following blog posts we study the topic of Distributed Deep Learning, or rather, how to parallelize gradient descent using data parallel methods. We start by laying out the theory, while supplying you with some intuition into the techniques we applied. At the end of this blog post, we conduct some experiments to evaluate how different optimization schemes perform in identical situations. We also introduce dist-keras(link is external), which is our distributed deep learning framework built on top of Apache Spark(link is external) and Keras(link is external). For this, we provide several notebooks and examples(link is external). This framework is mainly used to test our distributed optimization schemes, however, it also has several practical applications at CERN, not only because of the distributed learning, but also for model serving purposes. For example, we provide several examples(link is external) which show you how to integrate this framework with Spark Streaming and Apache Kafka. Finally, these series will contain parts of my master-thesis research. As a result, they will mainly show my research progress. However, some might find some of the approaches I present here useful to apply in their own work.

原文链接:https://db-blog.web.cern.ch/blog/joeri-hermans/2017-01-distributed-deep-learning-apache-spark-and-keras

原文链接:http://maxpumperla.github.io/elephas/


4.【博客】Learning in Brains and Machines

简介:

We all make mistakes, and as is often said, only then can we learn. Our mistakes allow us to gain insight, and the ability to make better judgements and fewer mistakes in future. In their influential paper, the neuroscientists Robert Rescorla and Allan Wagner put this more succinctly, 'organisms only learn when events violate their expectations' [1]. And so too of learning in machines. In both brains and machines we learn by trading the currency of violated expectations: mistakes that are represented as prediction errors.

We rely on predictions to aid every part of our decision-making. We make predictions about the position of objects as they fall to catch them, the emotional state of other people to set the tone of our conversations, the future behaviour of economic indicators, and of the potentially adverse effects of new medical treatments. Of the multitude of prediction problems that exist, the prediction of rewards is one of the most fundamental and one that brains are especially good at. This post explores the neuroscience and mathematics of rewards, and the mutual inspirations these fields offer us for the understanding and design of intelligent systems.

原文链接:http://blog.shakirm.com/2016/02/learning-in-brains-and-machines-1/


5.【博客 & 代码】Deep Learning for Supervised Language Identification for Short and Long Texts!

简介:

In this post, will look at language identification for written text such that some text is given and a set of languages, identify which language it belongs to. To this extent, I use the Genesis dataset from NLTK which has six languages : Finnish, English, German, French, Swedish and Portuguese.

原文链接:https://medium.com/@amarbudhiraja/supervised-language-identification-for-short-and-long-texts-with-code-626f9c78c47c#.aoyh59274

代码链接:https://github.com/budhiraja/DeepLearningExperiments/blob/master/Deep%20Learning%20for%20Supervised%20Language%20Identification/Identification%20of%20Language.ipynb


本文转载自:http://www.jianshu.com/p/0718436f9afb

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
01/14
0
0
2017GIAC全球互联网架构大会

12月22日至23日,高可用架构和msup联合主办的GIAC 全球互联网架构大会将于上海举行。GIAC 全球互联网架构大会是高可用架构技术社区推广的面向架构师、技术负责人及高端技术从业人员的技术架构...

msup
2017/12/06
5
0
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Spring Batch @SpringBatchTest 注解

Spring Batch 提供了一些非常有用的工具类(例如 JobLauncherTestUtils 和 JobRepositoryTestUtils)和测试执行监听器(StepScopeTestExecutionListener 和 JobScopeTestExecutionListener)......

honeymose
25分钟前
2
0
浏览器缓存

HTTP缓存类型 200 from cache:直接从本地缓存获取响应,可细分为from disk cache, from memory cache 304 Not Modified:协商缓存,本地未命中发送校验数据到服务端,如果服务端数据没有改变,则读...

关元
38分钟前
2
0
正则表达式简单使用说明

在Python3里确实简单明了,测试样例如下 # 正则content = 'Hello 1234567 World_This is a Regex Demo'# 贪婪匹配 尽可能多的匹配result = re.match('^He.*(\d+).*Demo$', co......

轻轻的往前走
39分钟前
2
0
多线程创建方式

一、基本概念 进程:就是正在运行的应用程序,进程是线程的集合。 线程:就是进程中的一条执行路径,一个独立的执行单元。 多线程:就是为了提高程序的效率,使用多线程,每个线程互不影响,...

秋至丶枫以落
43分钟前
2
0
聊聊flink的Async I/O

序 本文主要研究一下flink的Async I/O 实例 // This example implements the asynchronous request and callback with Futures that have the// interface of Java 8's futures (which is t......

go4it
51分钟前
3
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部