文档章节

人工智能资料库:第20辑(20170129)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:21
字数 637
阅读 2
收藏 0

  1. 【资料】AN ANNOTATED DEEP LEARNING BIBLIOGRAPHY

简介:

一大堆深度学习资料

原文链接:http://memkite.com/deep-learning-bibliography/#santos2014learning


2.【博客 & 代码】Nexar’s Deep Learning Challenge: the winners reveal their secrets

简介:

前段时间看了利用深度学习来识别交通灯的比赛,现在比赛的代码出来了,可以自己动手学习一下了。

原文链接:https://blog.getnexar.com/nexars-deep-learning-challenge-the-winners-reveal-their-secrets-e80c24147f2d#.qm82s6g39


3.【博客】Distributed Deep Learning with Apache Spark and Keras

简介:

In the following blog posts we study the topic of Distributed Deep Learning, or rather, how to parallelize gradient descent using data parallel methods. We start by laying out the theory, while supplying you with some intuition into the techniques we applied. At the end of this blog post, we conduct some experiments to evaluate how different optimization schemes perform in identical situations. We also introduce dist-keras(link is external), which is our distributed deep learning framework built on top of Apache Spark(link is external) and Keras(link is external). For this, we provide several notebooks and examples(link is external). This framework is mainly used to test our distributed optimization schemes, however, it also has several practical applications at CERN, not only because of the distributed learning, but also for model serving purposes. For example, we provide several examples(link is external) which show you how to integrate this framework with Spark Streaming and Apache Kafka. Finally, these series will contain parts of my master-thesis research. As a result, they will mainly show my research progress. However, some might find some of the approaches I present here useful to apply in their own work.

原文链接:https://db-blog.web.cern.ch/blog/joeri-hermans/2017-01-distributed-deep-learning-apache-spark-and-keras

原文链接:http://maxpumperla.github.io/elephas/


4.【博客】Learning in Brains and Machines

简介:

We all make mistakes, and as is often said, only then can we learn. Our mistakes allow us to gain insight, and the ability to make better judgements and fewer mistakes in future. In their influential paper, the neuroscientists Robert Rescorla and Allan Wagner put this more succinctly, 'organisms only learn when events violate their expectations' [1]. And so too of learning in machines. In both brains and machines we learn by trading the currency of violated expectations: mistakes that are represented as prediction errors.

We rely on predictions to aid every part of our decision-making. We make predictions about the position of objects as they fall to catch them, the emotional state of other people to set the tone of our conversations, the future behaviour of economic indicators, and of the potentially adverse effects of new medical treatments. Of the multitude of prediction problems that exist, the prediction of rewards is one of the most fundamental and one that brains are especially good at. This post explores the neuroscience and mathematics of rewards, and the mutual inspirations these fields offer us for the understanding and design of intelligent systems.

原文链接:http://blog.shakirm.com/2016/02/learning-in-brains-and-machines-1/


5.【博客 & 代码】Deep Learning for Supervised Language Identification for Short and Long Texts!

简介:

In this post, will look at language identification for written text such that some text is given and a set of languages, identify which language it belongs to. To this extent, I use the Genesis dataset from NLTK which has six languages : Finnish, English, German, French, Swedish and Portuguese.

原文链接:https://medium.com/@amarbudhiraja/supervised-language-identification-for-short-and-long-texts-with-code-626f9c78c47c#.aoyh59274

代码链接:https://github.com/budhiraja/DeepLearningExperiments/blob/master/Deep%20Learning%20for%20Supervised%20Language%20Identification/Identification%20of%20Language.ipynb


本文转载自:http://www.jianshu.com/p/0718436f9afb

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
依图夺脸部辨识首奖,施密特:美国 AI 优势只剩 5 年

Thomson Reuters 28 日报导,根据美国智库“新美国安全中心”(CNAS)专家 Elsa Kania 发布的报告,中国在科技领域已经不比美国差,可能已有能力在人工智能(AI)项目超越美国。 Alphabet I...

moneydj
2017/11/29
0
0
哈工大成立人工智能研究院,NLP全国前三

哈工大 20 年代校址(来源:哈工大官网) 作者 | 阿司匹林 出品 | AI科技大本营(公众号ID:rgznai100) 今日(5 月 5 日),哈尔滨工业大学正式宣布成立人工智能研究院,王亚东教授担任首任...

dqcfkyqdxym3f8rb0
05/05
0
0
『七月直播』人工智能第一场——人工智能学习与发展路线规划【唐宇迪老师】

第一场——主题:人工智能学习与发展路线规划 7月19日(周四) 20:00~21:00 >主讲老师:唐宇迪 同济大学计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战专家,善于实现...

51CTO学院
07/17
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

RabbitMQ在CentOS环境安装

1.废话不多说准备一台虚拟机,系统为centos,我这里使用的系统版本如下图所示:

凌晨一点
47分钟前
0
0
线程池相关

在java.util.concurrent包下,提供了一系列与线程池相关的类。 使用线程池的好处 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗; 提高响应速度。当任务到达时,任务...

edwardGe
49分钟前
0
0
学习大数据这三个关键技术是一定要掌握!

大数据时代全面来临,大数据、人工智能等技术引领科技创新潮流,获得国家政策大力支持,前景广阔。学习大数据技术的人自然是络绎不绝, 学习大数据虽然是一个趋势,但也要注意大数据培训课程...

董黎明
今天
0
0
jetbrains 上传代码到github

设置中找github 获取token 验证是否成功 测试git 生成key,一路回车即可 ssh-keygen -t rsa -C “youremail@example.com” 打开pub复制key,需要再次输入一次密码 验证是否成功,输入yes即可...

阿豪boy
今天
0
0
分布式服务框架(拾遗)

前言 现在的大部分工程都已经是基于分布式架构来处理。所以这里对分布式框架做一个简单的总结 常用的RPC框架 RPC框架原理 RPC(Remote Procedure Call,远程过程调用)一般用来实现部署在不同...

kukudeku
今天
3
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部