文档章节

人工智能资料库:第20辑(20170129)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:21
字数 637
阅读 2
收藏 0

  1. 【资料】AN ANNOTATED DEEP LEARNING BIBLIOGRAPHY

简介:

一大堆深度学习资料

原文链接:http://memkite.com/deep-learning-bibliography/#santos2014learning


2.【博客 & 代码】Nexar’s Deep Learning Challenge: the winners reveal their secrets

简介:

前段时间看了利用深度学习来识别交通灯的比赛,现在比赛的代码出来了,可以自己动手学习一下了。

原文链接:https://blog.getnexar.com/nexars-deep-learning-challenge-the-winners-reveal-their-secrets-e80c24147f2d#.qm82s6g39


3.【博客】Distributed Deep Learning with Apache Spark and Keras

简介:

In the following blog posts we study the topic of Distributed Deep Learning, or rather, how to parallelize gradient descent using data parallel methods. We start by laying out the theory, while supplying you with some intuition into the techniques we applied. At the end of this blog post, we conduct some experiments to evaluate how different optimization schemes perform in identical situations. We also introduce dist-keras(link is external), which is our distributed deep learning framework built on top of Apache Spark(link is external) and Keras(link is external). For this, we provide several notebooks and examples(link is external). This framework is mainly used to test our distributed optimization schemes, however, it also has several practical applications at CERN, not only because of the distributed learning, but also for model serving purposes. For example, we provide several examples(link is external) which show you how to integrate this framework with Spark Streaming and Apache Kafka. Finally, these series will contain parts of my master-thesis research. As a result, they will mainly show my research progress. However, some might find some of the approaches I present here useful to apply in their own work.

原文链接:https://db-blog.web.cern.ch/blog/joeri-hermans/2017-01-distributed-deep-learning-apache-spark-and-keras

原文链接:http://maxpumperla.github.io/elephas/


4.【博客】Learning in Brains and Machines

简介:

We all make mistakes, and as is often said, only then can we learn. Our mistakes allow us to gain insight, and the ability to make better judgements and fewer mistakes in future. In their influential paper, the neuroscientists Robert Rescorla and Allan Wagner put this more succinctly, 'organisms only learn when events violate their expectations' [1]. And so too of learning in machines. In both brains and machines we learn by trading the currency of violated expectations: mistakes that are represented as prediction errors.

We rely on predictions to aid every part of our decision-making. We make predictions about the position of objects as they fall to catch them, the emotional state of other people to set the tone of our conversations, the future behaviour of economic indicators, and of the potentially adverse effects of new medical treatments. Of the multitude of prediction problems that exist, the prediction of rewards is one of the most fundamental and one that brains are especially good at. This post explores the neuroscience and mathematics of rewards, and the mutual inspirations these fields offer us for the understanding and design of intelligent systems.

原文链接:http://blog.shakirm.com/2016/02/learning-in-brains-and-machines-1/


5.【博客 & 代码】Deep Learning for Supervised Language Identification for Short and Long Texts!

简介:

In this post, will look at language identification for written text such that some text is given and a set of languages, identify which language it belongs to. To this extent, I use the Genesis dataset from NLTK which has six languages : Finnish, English, German, French, Swedish and Portuguese.

原文链接:https://medium.com/@amarbudhiraja/supervised-language-identification-for-short-and-long-texts-with-code-626f9c78c47c#.aoyh59274

代码链接:https://github.com/budhiraja/DeepLearningExperiments/blob/master/Deep%20Learning%20for%20Supervised%20Language%20Identification/Identification%20of%20Language.ipynb


本文转载自:http://www.jianshu.com/p/0718436f9afb

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
美DARPA斥资20亿美元研发下一代AI技术

【概要】2018年9月7日,美国国防高级研究计划局(DARPA)宣布将投资20亿美元研发下一代人工智能(AI)技术。由于目前主流AI技术依赖于大量高质量的训练数据,很难适应不断变化的外部条件,有...

人工智能快报
09/19
0
0
依图夺脸部辨识首奖,施密特:美国 AI 优势只剩 5 年

Thomson Reuters 28 日报导,根据美国智库“新美国安全中心”(CNAS)专家 Elsa Kania 发布的报告,中国在科技领域已经不比美国差,可能已有能力在人工智能(AI)项目超越美国。 Alphabet I...

moneydj
2017/11/29
0
0
一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现

一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云、马化腾、李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲。关于人工智能的现状与未来,他们提出了...

Terminator2050
09/27
0
0

没有更多内容

加载失败,请刷新页面

加载更多

python做文本内容指定区域字符串替换

需求: 因为公司项目需要做SEO优化,所以对项目中的各种长连接做优化,比如本文中提到的精简路径;之前已经批量吧文本的路径名字等做过修改,这里不再赘述;这里的问题是外部的路径修改了,文...

坦途abc
26分钟前
3
0
MySQL 关键字模糊匹配,并按照匹配度排序

MySQL 关键字模糊匹配,并按照匹配度排序。 方式一、按照关键字搜索,然后根据关键字所占比例排序 SELECTdrug_name,pinyinFROMtbl_drugWHEREpinyin LIKE '%AM%'ORDER BY...

yh32
36分钟前
3
0
虚拟机学习之一:java内存区域与内存溢出异常

1.运行时数据区域 java虚拟机在执行java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域都有各自的用途和创建、销毁时间,有的区域伴随虚拟机进程的启动而存在,有些区...

贾峰uk
36分钟前
0
0
Spring加载properties文件的两种方式

在项目中如果有些参数经常需要修改,或者后期可能需要修改,那我们最好把这些参数放到properties文件中,源代码中读取properties里面的配置,这样后期只需要改动properties文件即可,不需要修...

架构师springboot
53分钟前
1
0
分布式事务,原来可以这么玩?

多个数据要同时操作,如何保证数据的完整性,以及一致性? 答 : 事务 ,是常见的做法。 举个栗子: 用户下了一个订单,需要修改 余额表 , 订单 表 , 流水 表 ,于是会有类似的伪代码: st...

微笑向暖wx
55分钟前
2
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部