文档章节

人工智能资料库:第22辑(20170131)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:20
字数 752
阅读 2
收藏 0
点赞 0
评论 0

  1. 【视频】Can Cognitive Neuroscience Provide a Theory of Deep Learning

简介:

本视频主要讲解了认知神经科学对深度学习的理论支持。

原文链接:https://www.youtube.com/watch?v=Zh4A4Lb9jk8&feature=youtu.be

PPT链接:http://www.slideshare.net/SessionsEvents/ted-willke-sr-principal-engineer-intel


2.【博客】Preparing a large-scale image dataset with TensorFlow's tfrecord files

简介:

There are several methods of reading image data in TensorFlow as mentioned in its documentation:

From disk: Using the typical feed_dict argument when running a session for the train_op. However, this is not always possible if your dataset is too large to be held in your GPU memory for it to be trained.

From CSV Files: Not as relevant for dealing with images.

From TFRecord files: This is done by first converting images that are already properly arranged in sub-directories according to their classes into a readable format for TensorFlow, so that you don’t have to read in raw images in real-time as you train. This is much faster than reading images from disk.

原文链接:https://kwotsin.github.io/tech/2017/01/29/tfrecords.html


3.【论文】Optimization Methods for Large-Scale Machine Learning

简介:

This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machine learning represents a distinctive setting in which the stochastic gradient (SG) method has traditionally played a central role while conventional gradient-based nonlinear optimization techniques typically falter. Based on this viewpoint, we present a comprehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior, and highlight opportunities for designing algorithms with improved performance. This leads to a discussion about the next generation of optimization methods for large-scale machine learning, including an investigation of two main streams of research on techniques that diminish noise in the stochastic directions and methods that make use of second-order derivative approximations.

原文链接:https://arxiv.org/pdf/1606.04838v1.pdf


4.【问答】41 Essential Machine Learning Interview Questions (with answers)

简介:

Machine learning interview questions are an integral part of the data science interview and the path to becoming a data scientist, machine learning engineer or data engineer. Springboardcreated afree guide to data science interviewsso we know exactly how they can trip candidates up! In order to help resolve that, here is a curated and created a list of key questions that you could see in a machine learning interview. There aresome answers to go along with them so you don’t get stumped. You’ll be able to do well in any job interview with machine learning interview questions after reading through this piece.

原文链接:https://www.springboard.com/blog/machine-learning-interview-questions/


5.【代码】Word Prediction using Convolutional Neural Networks

简介:

In this project, we examine how well neural networks can predict the current or next word. Language modeling is one of the most important nlp tasks, and you can easily find deep learning approaches to it. Our contribution is threefold. First, we want to make a model that simulates a mobile environment, rather than having general modeling purposes. Therefore, instead of assessing perplexity, we try to save the keystrokes that the user need to type. To this end, we manually typed 64 English paragraphs with a iPhone 7 for comparison. It was super boring, but hopefully it will be useful for others. Next, we use CNNs instead of RNNs, which are more widely used in language modeling tasks. RNNs—even improved types such as LSTM or GRU—suffer from short term memory. Deep layers of CNNs are expected to overcome the limitation. Finally, we employ a character-to-word model here. Concretely, we predict the current or next word, seeing the preceding 50 characters. Because we need to make a prediction at every time step of typing, the word-to-word model dont't fit well. And the char-to-char model has limitations in that it depends on the autoregressive assumption. Our current belief is the character-to-word model is best for this task. Although our relatively simple model is still behind a few steps iPhone 7 Keyboard, we observed its potential.

原文链接:https://github.com/Kyubyong/word_prediction


本文转载自:http://www.jianshu.com/p/ee80130837f3

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
【全球AI芯片榜单】中国大陆企业无缘前十,华为、寒武纪、地平线扛鼎突围!

     来源:Compass Intelligence、中科院自动化所等   编辑:克雷格、肖琴   【新智元导读】最近,Compass Intelligence对全球100多家AI芯片企业进行了排名,结果显示,前十名中中国...

深度学习
05/07
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
人工智能集训营 | AI 时代,未来由你掌控

免费试听时间:第一周课程免费试听 北京时间 4/23 10:00-12:00 美西时间 4/22 19:00-21:00 课程安排:课程为期3个月 北京时间 每周一、四、六、日 10:00-12:00 美西时间 每周日、三、五、六 ...

micf435p6d221ssdld2
04/22
0
0
CCF-GAIR 2018 第一批包机酒学生名单出炉!AI 科技评论请你来参加CCF-GAIR大会啦!

CCF - GAIR 2018 将于 6 月 29 日 至 7 月 1 日 在深圳举行。 三天议程及强大阵容已经陆续出炉。 6 月 8 日, 雷锋网旗下学术频道 AI 科技评论启动了 CCF-GAIR 2018 的免费门票申请通道, 并...

奕欣
06/16
0
0
【今日AI】12月9日

【1分钟AI】 1、百度AI加速器第一期开营 22家企业入驻 2、「文安智能」完成2000万美元B轮融资,三星电子、ABB参投 3、特斯拉电动卡车迎来大单:百威啤酒生产商预定40辆 4、AI芯片领导者Bitma...

Yetta000
2017/12/09
0
0
朱民:人工智能重塑传统银行;李开复:重复性工作被取代

        “人工智能”进入国考试卷 科技类试题比重大   2018年国家公务员考试公共科目笔试今天上午在全国各考点同时举行,165万人将为2.8万余个“金饭碗”展开激烈争夺。   上午的...

遇见人工智能
2017/12/11
0
0
AI当歌唱比赛评委,黑幕将越来越少

一直以来,歌唱比赛和歌唱选秀节目都因评委问题而备受质疑。刘欢更是因此而退出中国好声音。 那么,如何才能解决这一问题呢? 近日,中科院自动化研究所基于大数据研发出一款人工智能评分机器...

za8kfnpo2
2017/12/18
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

(转)SQL语句的执行顺序

(7) SELECT (8) DISTINCT <select_list> (1) FROM <left_table> (3) <join_type> JOIN <right_table> (2) ON <join_condition> (4) WHERE <where_condition> (5) GROUP BY <group_by_list> (......

Avner
17分钟前
0
0
1.14 救援模式

确保开机启动时连接镜像文件,如果是真机服务器,就需要:U盘或光盘镜像启动进入BIOS 不同主板进入bios按键不同,一般是F12或Esc 光标:移动到Boot(开机启动项) 减号移动:光标选中行,按-...

小丑鱼00
24分钟前
0
0
ES11-全文检索

高级别全文检索通常用于在全文本字段(如电子邮件正文)上运行全文检索。 他们了解如何分析被查询的字段,并在执行之前将每个字段的分析器(或search_analyzer)应用于查询字符串。 1.term查...

贾峰uk
28分钟前
0
0
java 复制对象有哪些方式

java 复制对象有哪些方式 Apache的 Common beanutils库 org.apache.commons.beanutils.BeanUtils.copyProperties(dest,origin); Springframework 的BeanUtil 依赖: <dependency> ......

黄威
43分钟前
1
0
jstack的简单使用

公司测试反应, 一个java应用的机器, 即使不做交易, cpu始终是30%多, 于是想到了jstack, 实践步骤记录一下: 1, 找出java应用的进程号 ps -ef|grep 应用名|grep -v grep 2, 找出pid下的cpu占用...

零二一七
50分钟前
1
0
崛起于Springboot2.X之项目war打包部署(18)

将springboot项目打包步骤: 1、启动类 extends SpringBootServletInitializer 2、启动类添加覆盖方法 @Overrideprotected SpringApplicationBuilder configure(SpringApplicationBuilder......

木九天
59分钟前
2
0
导入CSV文件就行数据整理分析

#-*-coding:utf-8-*-import csv,os,re,mathlocalPath=input("请输入所有群文件的根目录:") #所有QQ群文件的物理根目录路径def info(): info_dic=[] dirList=os.listdi...

Kefy
今天
5
0
CoreText进阶(六)-内容大小计算和自动布局

CoreText进阶(六)-内容大小计算和自动布局 其它文章: CoreText 入门(一)-文本绘制 CoreText入门(二)-绘制图片 CoreText进阶(三)-事件处理 CoreText进阶(四)-文字行数限制和显示更...

aron1992
今天
1
0
一个Unity高人的博客,涉猎范围很广,深度也很深。

https://blog.csdn.net/ecidevilin/article/list/

爽歪歪ES
今天
0
0
Spring Cloud Config-Git后端

EnvironmentRepository的默认实现使用Git后端,这对于管理升级和物理环境以及审核更改非常方便。要更改存储库的位置,可以在Config Server中设置“spring.cloud.config.server.git.uri”配置...

itcloud
今天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部