文档章节

人工智能资料库:第11辑(20170117)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:20
字数 610
阅读 3
收藏 0

  1. 【论文&代码】Accelerating Eulerian Fluid Simulation With Convolutional Networks
    简介:

Real-time simulation of fluid and smoke is a long standing problem in computer graphics, where state-of-the-art approaches require large compute resources, making real-time applications often impractical. In this work, we propose a data-driven approach that leverages the approximation power of deep-learning methods with the precision of standard fluid solvers to obtain both fast and highly realistic simulations. The proposed method solves the incompressible Euler equations following the standard operator splitting method in which a large, often ill-condition linear system must be solved. We propose replacing this system by learning a Convolutional Network (ConvNet) from a training set of simulations using a semi-supervised learning method to minimize long-term velocity divergence.

ConvNets are amenable to efficient GPU implementations and, unlike exact iterative solvers, have fixed computational complexity and latency. The proposed hybrid approach restricts the learning task to a linear projection without modeling the well understood advection and body forces. We present real-time 2D and 3D simulations of fluids and smoke; the obtained results are realistic and show good generalization properties to unseen geometry.

原文链接:http://cims.nyu.edu/~schlacht/CNNFluids.htm

代码链接:https://github.com/google/FluidNet


2.【博客】Highway Networks with TensorFlow

简介:

This week I implemented highway networks to get an intuition for how they work. Highway networks, inspired by LSTMs, are a method of constructing networks with hundreds, even thousands, of layers. Let’s see how we construct them using TensorFlow.

原文链接:https://medium.com/jim-fleming/highway-networks-with-tensorflow-1e6dfa667daa#.vxxpgint3


3.【博客】An LSTM Odyssey

简介:

This week I read LSTM: A Search Space Odyssey. It’s an excellent paper that systematically evaluates the different internal mechanisms of an LSTM (long short-term memory) block by disabling each mechanism in turn and comparing their performance. We’re going to implement each of the variants in TensorFlow and evaluate their performance on the Penn Tree Bank (PTB) dataset. This will obviously not be as thorough as the original paper but it allows us to see, and try out, the impact of each variant for ourselves.

原文链接:https://medium.com/jim-fleming/implementing-lstm-a-search-space-odyssey-7d50c3bacf93#.7iqy02qh0


4.【博客&代码】Recurrent generative auto-encoders and novelty search

简介:

This post summarizes a bunch of connected tricks and methods I explored with the help of my co-authors. Following the previous post, above the stability properties of GANs, the overall aim was to improve our ability to train generative models stably and accurately, but we went through a lot of variations and experiments with different methods on the way. I’ll try to explain why I think these things worked, but we’re still exploring it ourselves as well.

原文链接:http://www.araya.org/archives/1306?utm_content=buffer1bcba&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

代码链接:https://github.com/arayabrain/RecurrentAutoencoder


5.【博客&代码】Recursive (not recurrent!) Neural Nets in TensorFlow

简介:

For the past few days I’ve been working on how to implement recursive neural networks in TensorFlow. Recursive neural networks (which I’ll call TreeNets from now on to avoid confusion with recurrent neural nets) can be used for learning tree-like structures (more generally, directed acyclic graph structures). They are highly useful for parsing natural scenes and language; see the work of Richard Socher (2011) for examples. More recently, in 2014, Ozan İrsoy used a deep variant of TreeNets to obtain some interesting NLP results.

原文地址:https://pseudoprofound.wordpress.com/2016/06/20/recursive-not-recurrent-neural-nets-in-tensorflow/

代码地址:https://gist.github.com/anj1/504768e05fda49a6e3338e798ae1cddd


本文转载自:http://www.jianshu.com/p/f696814c2d55

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
依图夺脸部辨识首奖,施密特:美国 AI 优势只剩 5 年

Thomson Reuters 28 日报导,根据美国智库“新美国安全中心”(CNAS)专家 Elsa Kania 发布的报告,中国在科技领域已经不比美国差,可能已有能力在人工智能(AI)项目超越美国。 Alphabet I...

moneydj
2017/11/29
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
最新发布 | 2018年度第八届吴文俊人工智能科学技术奖获奖名单公示

来源:人工智能人物 摘要:2018年度第八届吴文俊人工智能科学技术奖评审工作已经完成。 根据《吴文俊人工智能科学技术奖励条例》和《吴文俊人工智能科学技术奖励实施细则》相关规定,经全国各...

人工智能学家
10/09
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Thinkphp5 优雅配置两个数据库

工作需要需要配置两个数据库,框架5.0的,步骤如下: 1、在database.php同级创建一个database2.php文件 在里面配置第二个数据库信息, 2、在config中配置这个数据库信息: 3、创建第二个表的...

wqzbxh
14分钟前
1
0
Socket网络编程进阶与实战

Socket网络编程进阶与实战 Socket对于每个工程师的重要性不言而喻。本课程将理论结合实践,带你从零开始,系统学习Socket编程技术,让Socket的学习不再那么零散与难以掌握,同时会提炼出Soc...

qq__2304636824
20分钟前
1
0
Android studio常用快捷键

Ctrl +Alt +Space //显示可用参数 Ctrl + Alt +M //抽取方法 Ctrl +Alt + F //提取全局变量 Ctrl +Shift + "+或-" //折叠/展开代码块 Shift + F6 //批量更改变量 Ctrl + Tab //切换器 Ctrl +...

lanyu96
33分钟前
2
0
@ControllerAdvice 拦截异常并统一处理

在spring 3.2中,新增了@ControllerAdvice 注解,可以用于定义@ExceptionHandler、@InitBinder、@ModelAttribute,并应用到所有@RequestMapping中。 一、介绍 创建 MyControllerAdvice,并添...

狼王黄师傅
36分钟前
1
0
ajax传递参数给springmvc总结[转]

https://www.cnblogs.com/franson-2016/p/6770028.html https://www.cnblogs.com/xiaoxi/p/5708084.html 总结: 1.springmvc与Ajax交互,可以传入三种类型的数据: (1)文本:"uname=alice&......

废柴
38分钟前
2
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部