文档章节

人工智能资料库:第55辑(20170522)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:20
字数 593
阅读 2
收藏 0

1.【论文 & 代码】Inferring and Executing Programs for Visual Reasoning

简介:


Existing methods for visual reasoning attempt to directly map inputs to outputs using black-box architectures without explicitly modeling the underlying reasoning processes. As a result, these black-box models often learn to exploit biases in the data rather than learning to perform visual reasoning. Inspired by module networks, this paper proposes a model for visual reasoning that consists of a program generator that constructs an explicit representation of the reasoning process to be performed, and an execution engine that executes the resulting program to produce an answer. Both the program generator and the execution engine are implemented by neural networks, and are trained using a combination of backpropagation and REINFORCE. Using the CLEVR benchmark for visual reasoning, we show that our model significantly outperforms strong baselines and generalizes better in a variety of settings.

原文链接:https://github.com/facebookresearch/clevr-iep


2.【代码】Deep Feature Flow for Video Recognition

简介:


Deep Feature Flow is initially described in a CVPR 2017 paper. It provides a simple, fast, accurate, and end-to-end framework for video recognition (e.g., object detection and semantic segmentation in videos). It is worth noting that:

  • Deep Feature Flow significantly speeds up video recognition by applying the heavy-weight image recognition network (e.g., ResNet-101) on sparse key frames, and propagating the recognition outputs (feature maps) to the other frames by the light-weight flow network (e.g., FlowNet).
  • The entire system is end-to-end trained for the task of video recognition, which is vital for improving the recognition accuracy. Directly adopting state-of-the-art flow estimation methods without end-to-end training would deliver noticable worse results.
  • Deep Feature Flow can easily make use of sparsely annotated video recognition datasets, where only a small portion of the frames are annotated with ground-truth labels.

原文链接:https://github.com/msracver/Deep-Feature-Flow


3.【博客】Learn Python for Data Science from Scratch

简介:

Python is a multipurpose programming language and widely used for Data Science, which is termed as the sexiest job of this century. Data Scientist mine thru the large dataset to gain insight and make meaningful data driven decisions. Python is used as general purposed programming language and used for Web Development, Networking, Scientific computing etc. We will be discussing further about the series of awesome libraries in python such as numpy, scipy & pandas for data manipulation & wrangling and matplotlib, seaborn & bokeh for data visualization.

原文链接:http://www.datasciencecentral.com/profiles/blogs/learn-python-for-data-science-from-scratch


4.【博客】Keras Tensorflow tutorial: Practical guide from getting started to developing complex deep neural network

简介:

In this quick tutorial, we shall learn following things:

  1. Why Keras? Why is it considered to be the future of deep learning?
  2. Installing Keras on Ubuntu: Step by step installation on Ubuntu
  3. Keras Tensorflow tutorial: Fundamentals of Keras
  4. Understanding Keras Sequential Model
    4.1) Solve a linear regression problem with example
  5. Saving and restoring pre-trained models using Keras
  6. Keras functional API
    6.1) Develop VGG convolutional neural network using functional API
    6.2) Build and run SqueezeNet convolutional neural network using functional API

原文链接:http://cv-tricks.com/tensorflow-tutorial/keras/


5.【论文】The Next Generation Neural Networks: Deep Learning and
Spiking Neural Networks

简介:

Deep Learning and Spike Neural Networks are hot topics in artificial intelligence and human brain. By explaining the basic underlying blocks beneath them, the architectures and applications of both concepts are discovered.

原文链接:https://www.nst.ei.tum.de/fileadmin/w00bqs/www/publications/as/2014SS-HS-DeepLearningAndSNN.pdf


本文转载自:http://www.jianshu.com/p/2c79e295a34f

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
01/14
0
0
与AI大牛面对面:人工智能机器人,助手还是终结者?| 活动报名

人工智能与机器人技术正在迅速改造我们这个时代。 从工业生产,到家庭生活,再到各种电子设备上的语音助手,不管你有没有注意到,机器人以及它们所搭载的人工智能技术,都在融入我们的生活。...

Paper_weekly
2018/12/05
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

如何利用 Data too long for column 进行一些简单的攻击

1: 前提条件, 后台没有校验长度和频率校验,也没有CSRF校验,直接往数据库插入数据,此时很容易触发Data too long for column错误(一般抛出异常都挺浪费资源的,耗时,耗内存,耗cpu),一旦...

专业写BUG的程序员
23分钟前
3
0
RMAN命令详解

一、list命令 1. List 当前RMAN所备份的数据库: 1.1. list backup summary; --概述可用的备份 list incarnation;--汇总查询 --如果备份文件多的话多用这两个list命令可以对备份文件有个总体...

突突突酱
27分钟前
1
0
简单聊聊Linux学习经历

学习,是我们一生中都规避不了的一个话题,人的一生中都是在不断的学习,无论是功成名就的人士,还是一无是处的小混混,始终都处在一个不断学习的环境中,只是学习的内容千差万别,有的人是为...

问题终结者
34分钟前
1
0
Mysql高级 (2)——sql性能调优

sql 性能下降的原因 sql service的解析顺序 sql 的7中join

小小小施爷
39分钟前
1
0
MaxCompute用户初体验

作为一名初次使用MaxCompute的用户,我体会颇深。MaxCompute 开箱即用,拥有集成化的操作界面,你不必关心集群搭建、配置和运维工作。仅需简单的点击鼠标,几步操作,就可以在MaxCompute中上...

阿里云官方博客
40分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部