文档章节

人工智能资料库:第55辑(20170522)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:20
字数 593
阅读 2
收藏 0

1.【论文 & 代码】Inferring and Executing Programs for Visual Reasoning

简介:


Existing methods for visual reasoning attempt to directly map inputs to outputs using black-box architectures without explicitly modeling the underlying reasoning processes. As a result, these black-box models often learn to exploit biases in the data rather than learning to perform visual reasoning. Inspired by module networks, this paper proposes a model for visual reasoning that consists of a program generator that constructs an explicit representation of the reasoning process to be performed, and an execution engine that executes the resulting program to produce an answer. Both the program generator and the execution engine are implemented by neural networks, and are trained using a combination of backpropagation and REINFORCE. Using the CLEVR benchmark for visual reasoning, we show that our model significantly outperforms strong baselines and generalizes better in a variety of settings.

原文链接:https://github.com/facebookresearch/clevr-iep


2.【代码】Deep Feature Flow for Video Recognition

简介:


Deep Feature Flow is initially described in a CVPR 2017 paper. It provides a simple, fast, accurate, and end-to-end framework for video recognition (e.g., object detection and semantic segmentation in videos). It is worth noting that:

  • Deep Feature Flow significantly speeds up video recognition by applying the heavy-weight image recognition network (e.g., ResNet-101) on sparse key frames, and propagating the recognition outputs (feature maps) to the other frames by the light-weight flow network (e.g., FlowNet).
  • The entire system is end-to-end trained for the task of video recognition, which is vital for improving the recognition accuracy. Directly adopting state-of-the-art flow estimation methods without end-to-end training would deliver noticable worse results.
  • Deep Feature Flow can easily make use of sparsely annotated video recognition datasets, where only a small portion of the frames are annotated with ground-truth labels.

原文链接:https://github.com/msracver/Deep-Feature-Flow


3.【博客】Learn Python for Data Science from Scratch

简介:

Python is a multipurpose programming language and widely used for Data Science, which is termed as the sexiest job of this century. Data Scientist mine thru the large dataset to gain insight and make meaningful data driven decisions. Python is used as general purposed programming language and used for Web Development, Networking, Scientific computing etc. We will be discussing further about the series of awesome libraries in python such as numpy, scipy & pandas for data manipulation & wrangling and matplotlib, seaborn & bokeh for data visualization.

原文链接:http://www.datasciencecentral.com/profiles/blogs/learn-python-for-data-science-from-scratch


4.【博客】Keras Tensorflow tutorial: Practical guide from getting started to developing complex deep neural network

简介:

In this quick tutorial, we shall learn following things:

  1. Why Keras? Why is it considered to be the future of deep learning?
  2. Installing Keras on Ubuntu: Step by step installation on Ubuntu
  3. Keras Tensorflow tutorial: Fundamentals of Keras
  4. Understanding Keras Sequential Model
    4.1) Solve a linear regression problem with example
  5. Saving and restoring pre-trained models using Keras
  6. Keras functional API
    6.1) Develop VGG convolutional neural network using functional API
    6.2) Build and run SqueezeNet convolutional neural network using functional API

原文链接:http://cv-tricks.com/tensorflow-tutorial/keras/


5.【论文】The Next Generation Neural Networks: Deep Learning and
Spiking Neural Networks

简介:

Deep Learning and Spike Neural Networks are hot topics in artificial intelligence and human brain. By explaining the basic underlying blocks beneath them, the architectures and applications of both concepts are discovered.

原文链接:https://www.nst.ei.tum.de/fileadmin/w00bqs/www/publications/as/2014SS-HS-DeepLearningAndSNN.pdf


本文转载自:http://www.jianshu.com/p/2c79e295a34f

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
全球AI芯片榜单:七家中国公司入围Top24

  近日,市场研究公司Compass Intelligence发布了最新研究报告,在全球前15大AI芯片企业排名表中,前三名是英伟达(Nvidia)、英特尔(Intel)以及IBM,华为位列第12名,成为TOP15的中国“独苗...

人工智能技术社区
05/07
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

RESTful架构详解

1. 什么是REST REST全称是Representational State Transfer,中文意思是表述(编者注:通常译为表征)性状态转移。 它首次出现在2000年Roy Fielding的博士论文中,Roy Fielding是HTTP规范的主...

kitty1116
34分钟前
1
0
精通Spring Boot——第十篇:Quartz动态配置定时任务

定时任务简述 定时任务,在企业开发中尤其重要,很多业务都是需要定时任务去做的。比如说10点开售某件东西,凌晨0点统计注册人数,统计其他各种等等。这个时候不可能说让人为的去开启某个开关...

developlee的潇洒人生
36分钟前
1
0
将一些内容输出到文件中

看到一个面试题,如下: 第八题: 一个字符串将其输入到一个文件中,代码如下: <?php$a = '[{"teamId": "43", "serial": "1"},{"teamId": "1", "serial": "2"},{"teamId": "14", "serial":...

vinci321
45分钟前
1
0
nginx的简单使用:负载均衡

nginx:反向代理的服务器;用户发送请求到nginx,nginx把请求发送给真正的服务器,等待服务器处理完数据并返回,再把数据发送给用户。 nginx作为一个反向代理服务器,能缓存我们项目的静态文...

osliang
今天
2
0
网站title标题被改并被百度网址安全中心提醒的解决办法

国庆假日期间我们Sine安全接到众多网站站长求助网站标题被改导致在百度搜索中百度安全中心提醒被拦截,导致网站正常用户无法浏览网站被跳转到一些菠菜du博网站,而且很明显的一个特征就是在百...

网站安全
今天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部