文档章节

人工智能资料库:第23辑(20170201)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:19
字数 605
阅读 1
收藏 0

  1. 【视频】A Path to AI | Yann LeCun

简介:

Yann LeCun gives an overview of AI and outlines a path toward more general and complete AI at the January 2017 Asilomar conference organized by the Future of Life Institute.

The Beneficial AI 2017 Conference: In our sequel to the 2015 Puerto Rico AI conference, we brought together an amazing group of AI researchers from academia and industry, and thought leaders in economics, law, ethics, and philosophy for five days dedicated to beneficial AI. We hosted a two-day workshop for our grant recipients and followed that with a 2.5-day conference, in which people from various AI-related fields hashed out opportunities and challenges related to the future of AI and steps we can take to ensure that the technology is beneficial.

原文链接:https://www.youtube.com/watch?v=bub58oYJTm0


2.【代码】line drawing colorization using chainer

简介:


Paints Chainer is line drawing colorizer using chainer. Using CNN, you can colorize your scketch automatically / semi-automatically .

原文链接:https://github.com/pfnet/PaintsChainer

demo链接:http://paintschainer.preferred.tech/


3.【教程】Ultimate Guide to Understand & Implement Natural Language Processing (with codes in Python)

简介:

According to industry estimates, only 21% of the available data is present in structured form. Data is being generated as we speak, as we tweet, as we send messages on Whatsapp and in various other activities. Majority of this data exists in the textual form, which is highly unstructured in nature.

Few notorious examples include – tweets / posts on social media, user to user chat conversations, news, blogs and articles, product or services reviews and patient records in the healthcare sector. A few more recent ones includes chatbots and other voice driven bots.

Despite having high dimension data, the information present in it is not directly accessible unless it is processed (read and understood) manually or analyzed by an automated system.

In order to produce significant and actionable insights from text data, it is important to get acquainted with the techniques and principles of Natural Language Processing (NLP).

So, if you plan to create chatbots this year, or you want to use the power of unstructured text, this guide is the right starting point. This guide unearths the concepts of natural language processing, its techniques and implementation. The aim of the article is to teach the concepts of natural language processing and apply it on real data set.

原文链接:https://www.analyticsvidhya.com/blog/2017/01/ultimate-guide-to-understand-implement-natural-language-processing-codes-in-python/


4.【demo】Deep Learning and Sentiment Analysis

简介:

This repository contains code in Torch 7 for text classification from character-level using convolutional networks. It can be used to reproduce the results in the following article:

Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015)

Note: An early version of this work entitled “Text Understanding from Scratch” was posted in Feb 2015 as arXiv:1502.01710. The present paper above has considerably more experimental results and a rewritten introduction.

原文链接:http://osdcwebappdeeplearning.azurewebsites.net/


5.【博客】
Learning Policies For Learning Policies — Meta Reinforcement Learning (RL²) in Tensorflow

简介:

Reinforcement Learning provides a framework for training agents to solve problems in the world. One of the limitations of these agents however is their inflexibility once trained. They are able to learn a policy to solve a specific problem (formalized as an MDP), but that learned policy is often useless in new problems, even relatively similar ones.

原文链接:https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rl%C2%B2-in-tensorflow-b15b592a2ddf#.r75ht8t0s


本文转载自:http://www.jianshu.com/p/a5b546a9ede4

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
01/14
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
2018第四范式人工智能+新媒体论坛

2018首届人工智能+新媒体峰会将于11月6日在Blue Note Beijing举办。人民日报新媒体中心丁伟、原新华社新媒体中心总经理现中国搜索党委书记李俊、罗辑思维联合创始人李俊、凤凰新媒体客户端总...

第四范式
2018/10/25
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Jmeter参数的AES加密使用

在Jmeter日常实践中,大家应该都遇到过接口传参需要加密的情况。以登陆为例,用户名和密码一般都需要进行加密传输,在服务端再进行解密,这样安全系数会更高,但在使用jmeter进行接口测试的时...

程序猿拿Q
2分钟前
0
0
MYSQL 日期函数 Date and Time Functions

Table 12.13 Date and Time Functions Name Description ADDDATE() Add time values (intervals) to a date value ADDTIME() Add time CONVERT_TZ() Convert from one time zone to another ......

_liucui_
8分钟前
0
0
Android代码混淆ProGuard工作原理简介

ProGuard能够对Java类中的代码进行压缩(Shrink),优化(Optimize),混淆(Obfuscate),预检(Preveirfy)。    1. 压缩(Shrink): 在压缩处理这一步中,用于检测和删除没有使用的类,字段...

SuShine
11分钟前
0
0
Idea 2018激活

教程地址: https://www.52pojie.cn/thread-781394-1-1.html 亲测可用

一个不正经的程序员
16分钟前
0
0
Android组件化开发实践和案例分享

目录介绍 1.为什么要组件化 1.1 为什么要组件化 1.2 现阶段遇到的问题 2.组件化的概念 2.1 什么是组件化 2.2 区分模块化与组件化 2.3 组件化优势好处 2.4 区分组件化和插件化 2.5 applicatio...

潇湘剑雨
17分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部