文档章节

人工智能资料库:第23辑(20170201)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:19
字数 605
阅读 1
收藏 0

  1. 【视频】A Path to AI | Yann LeCun

简介:

Yann LeCun gives an overview of AI and outlines a path toward more general and complete AI at the January 2017 Asilomar conference organized by the Future of Life Institute.

The Beneficial AI 2017 Conference: In our sequel to the 2015 Puerto Rico AI conference, we brought together an amazing group of AI researchers from academia and industry, and thought leaders in economics, law, ethics, and philosophy for five days dedicated to beneficial AI. We hosted a two-day workshop for our grant recipients and followed that with a 2.5-day conference, in which people from various AI-related fields hashed out opportunities and challenges related to the future of AI and steps we can take to ensure that the technology is beneficial.

原文链接:https://www.youtube.com/watch?v=bub58oYJTm0


2.【代码】line drawing colorization using chainer

简介:


Paints Chainer is line drawing colorizer using chainer. Using CNN, you can colorize your scketch automatically / semi-automatically .

原文链接:https://github.com/pfnet/PaintsChainer

demo链接:http://paintschainer.preferred.tech/


3.【教程】Ultimate Guide to Understand & Implement Natural Language Processing (with codes in Python)

简介:

According to industry estimates, only 21% of the available data is present in structured form. Data is being generated as we speak, as we tweet, as we send messages on Whatsapp and in various other activities. Majority of this data exists in the textual form, which is highly unstructured in nature.

Few notorious examples include – tweets / posts on social media, user to user chat conversations, news, blogs and articles, product or services reviews and patient records in the healthcare sector. A few more recent ones includes chatbots and other voice driven bots.

Despite having high dimension data, the information present in it is not directly accessible unless it is processed (read and understood) manually or analyzed by an automated system.

In order to produce significant and actionable insights from text data, it is important to get acquainted with the techniques and principles of Natural Language Processing (NLP).

So, if you plan to create chatbots this year, or you want to use the power of unstructured text, this guide is the right starting point. This guide unearths the concepts of natural language processing, its techniques and implementation. The aim of the article is to teach the concepts of natural language processing and apply it on real data set.

原文链接:https://www.analyticsvidhya.com/blog/2017/01/ultimate-guide-to-understand-implement-natural-language-processing-codes-in-python/


4.【demo】Deep Learning and Sentiment Analysis

简介:

This repository contains code in Torch 7 for text classification from character-level using convolutional networks. It can be used to reproduce the results in the following article:

Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015)

Note: An early version of this work entitled “Text Understanding from Scratch” was posted in Feb 2015 as arXiv:1502.01710. The present paper above has considerably more experimental results and a rewritten introduction.

原文链接:http://osdcwebappdeeplearning.azurewebsites.net/


5.【博客】
Learning Policies For Learning Policies — Meta Reinforcement Learning (RL²) in Tensorflow

简介:

Reinforcement Learning provides a framework for training agents to solve problems in the world. One of the limitations of these agents however is their inflexibility once trained. They are able to learn a policy to solve a specific problem (formalized as an MDP), but that learned policy is often useless in new problems, even relatively similar ones.

原文链接:https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rl%C2%B2-in-tensorflow-b15b592a2ddf#.r75ht8t0s


本文转载自:http://www.jianshu.com/p/a5b546a9ede4

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
人工智能集训营 | AI 时代,未来由你掌控

免费试听时间:第一周课程免费试听 北京时间 4/23 10:00-12:00 美西时间 4/22 19:00-21:00 课程安排:课程为期3个月 北京时间 每周一、四、六、日 10:00-12:00 美西时间 每周日、三、五、六 ...

micf435p6d221ssdld2
04/22
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

java工程师用spring boot和web3j构建以太坊区块链应用

区块链最近IT世界的流行语之一。这项有关数字加密货币的技术,并与比特币一起构成了这个热门的流行趋势。它是去中心化的,不可变的分块数据结构,这是可以安全连接和使用的密码算法。在这种结...

笔阁
1分钟前
0
0
聊聊sentinel的SentinelWebAutoConfiguration

序 本文主要研究一下sentinel的SentinelWebAutoConfiguration SentinelWebAutoConfiguration spring-cloud-alibaba-sentinel-autoconfigure-0.2.0.BUILD-SNAPSHOT-sources.jar!/org/springf......

go4it
3分钟前
0
0
java ArrayList 根据对象内的属性排序

//根据修改时间排序Comparator com = new Comparator<ReleaseInfo>() {public int compare(ReleaseInfo reInfo1, ReleaseInfo reInfo2) { //return reInfo2.getModifyTime().c......

成长中的小白
4分钟前
0
0
PowerDesigner p f m

(非原创) P:PirmaryKey 主键 F:ForeignKey 外键 M:Mandatory 强制要求(不能为空) 主键: 主键是数据表的唯一索引,比如学生表里有学号和姓名,姓名可能有重名的,但学号确是唯一的,你要从...

森火
4分钟前
0
0
Nexus Repository Manager 搭建私有docker仓库

Nexus Repository Manager 搭建私有docker仓库 2018年05月08日 14:44:23 阅读数:115 1.下载nexus3的镜像: docker pull sonatype/nexus3 2.使用镜像启动一个容器: docker run -d --name n...

linjin200
5分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部