文档章节

人工智能资料库:第23辑(20170201)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:19
字数 605
阅读 1
收藏 0

  1. 【视频】A Path to AI | Yann LeCun

简介:

Yann LeCun gives an overview of AI and outlines a path toward more general and complete AI at the January 2017 Asilomar conference organized by the Future of Life Institute.

The Beneficial AI 2017 Conference: In our sequel to the 2015 Puerto Rico AI conference, we brought together an amazing group of AI researchers from academia and industry, and thought leaders in economics, law, ethics, and philosophy for five days dedicated to beneficial AI. We hosted a two-day workshop for our grant recipients and followed that with a 2.5-day conference, in which people from various AI-related fields hashed out opportunities and challenges related to the future of AI and steps we can take to ensure that the technology is beneficial.

原文链接:https://www.youtube.com/watch?v=bub58oYJTm0


2.【代码】line drawing colorization using chainer

简介:


Paints Chainer is line drawing colorizer using chainer. Using CNN, you can colorize your scketch automatically / semi-automatically .

原文链接:https://github.com/pfnet/PaintsChainer

demo链接:http://paintschainer.preferred.tech/


3.【教程】Ultimate Guide to Understand & Implement Natural Language Processing (with codes in Python)

简介:

According to industry estimates, only 21% of the available data is present in structured form. Data is being generated as we speak, as we tweet, as we send messages on Whatsapp and in various other activities. Majority of this data exists in the textual form, which is highly unstructured in nature.

Few notorious examples include – tweets / posts on social media, user to user chat conversations, news, blogs and articles, product or services reviews and patient records in the healthcare sector. A few more recent ones includes chatbots and other voice driven bots.

Despite having high dimension data, the information present in it is not directly accessible unless it is processed (read and understood) manually or analyzed by an automated system.

In order to produce significant and actionable insights from text data, it is important to get acquainted with the techniques and principles of Natural Language Processing (NLP).

So, if you plan to create chatbots this year, or you want to use the power of unstructured text, this guide is the right starting point. This guide unearths the concepts of natural language processing, its techniques and implementation. The aim of the article is to teach the concepts of natural language processing and apply it on real data set.

原文链接:https://www.analyticsvidhya.com/blog/2017/01/ultimate-guide-to-understand-implement-natural-language-processing-codes-in-python/


4.【demo】Deep Learning and Sentiment Analysis

简介:

This repository contains code in Torch 7 for text classification from character-level using convolutional networks. It can be used to reproduce the results in the following article:

Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015)

Note: An early version of this work entitled “Text Understanding from Scratch” was posted in Feb 2015 as arXiv:1502.01710. The present paper above has considerably more experimental results and a rewritten introduction.

原文链接:http://osdcwebappdeeplearning.azurewebsites.net/


5.【博客】
Learning Policies For Learning Policies — Meta Reinforcement Learning (RL²) in Tensorflow

简介:

Reinforcement Learning provides a framework for training agents to solve problems in the world. One of the limitations of these agents however is their inflexibility once trained. They are able to learn a policy to solve a specific problem (formalized as an MDP), but that learned policy is often useless in new problems, even relatively similar ones.

原文链接:https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rl%C2%B2-in-tensorflow-b15b592a2ddf#.r75ht8t0s


本文转载自:http://www.jianshu.com/p/a5b546a9ede4

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2635
码字总数 83001
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
人工智能集训营 | AI 时代,未来由你掌控

免费试听时间:第一周课程免费试听 北京时间 4/23 10:00-12:00 美西时间 4/22 19:00-21:00 课程安排:课程为期3个月 北京时间 每周一、四、六、日 10:00-12:00 美西时间 每周日、三、五、六 ...

micf435p6d221ssdld2
04/22
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

可爱的python测试开发库(python测试开发工具库汇总)

欢迎转载,转载请注明来源: github地址 谢谢点赞 本文地址 相关书籍下载 测试开发 Web UI测试自动化 splinter - web UI测试工具,基于selnium封装。 链接 selenium - web UI自动化测试。 链...

python测试开发人工智能安全
52分钟前
2
0
Shiro | 实现权限验证完整版

写在前面的话 提及权限,就会想到安全,是一个十分棘手的话题。这里只是作为学校Shiro的一个记录,而不是,权限就应该这样设计之类的。 Shiro框架 1、Shiro是基于Apache开源的强大灵活的开源...

冯文议
今天
1
0
linux 系统的运行级别

运行级别 运行级别 | 含义 0 关机 1 单用户模式,可以想象为windows 的安全模式,主要用于修复系统 2 不完全的命令模式,不含NFS服务 3 完全的命令行模式,就是标准的字符界面 4 系统保留 5 ...

Linux学习笔记
今天
2
0
学习设计模式——命令模式

任何模式的出现,都是为了解决一些特定的场景的耦合问题,以达到对修改封闭,对扩展开放的效果。命令模式也不例外: 命令模式是为了解决命令的请求者和命令的实现者之间的耦合关系。 解决了这...

江左煤郎
今天
3
0
字典树收集(非线程安全,后续做线程安全改进)

将500W个单词放进一个数据结构进行存储,然后进行快速比对,判断一个单词是不是这个500W单词之中的;来了一个单词前缀,给出500w个单词中有多少个单词是该前缀. 1、这个需求首先需要设计好数据结...

算法之名
昨天
15
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部