文档章节

redis06消息队列

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:18
字数 1990
阅读 10
收藏 0

任务队列

在web开发的场景中撰写常规的代码,一般是在一个视图层(view)将所有业务逻辑完成之后直接返回数据(可以是一个渲染后的html也可以是一组json数据)给用户的浏览器;业务比较简单且单一的逻辑处理响应时间通常都比较短,但涉及到发邮件、数据爬取、密集计算、复杂业务这种情况耗时较长的操作,如果不采取任何措施的话,那么在用户这边最直观的感受就是提交了请求后页面就僵在那里了(如果时间大于10秒钟,可能就会认为出问题了)。

redis的任务队列(列表)就是这种耗时等待比较长场景的解决办法之一,视图层是一个负责塞消息的对象(Producer角色),然后在单独写一个独立的进程来读取这个列表(Consumer)去完成后续的工作;那么视图层就可以直接返回一个页面给用户,告诉用户这个事情的状态是正在处理中,当处理完成之后将状态改成已完成,并提供一个链接让用户可以去查看任务明细结果。

将一个耗时操作拆开要从好几个方面进行考虑,用户的等待体验、将相同功能相同作用的代码抽象出来解耦、简化逻辑层的代码复杂度。

 

非堵塞读取(rpop)

queue_rpop/producer.py

import redis

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)

# 清空所有键
for number, key in enumerate(r.keys()):
    r.delete(key)

# 准备数据
r.rpush('queue:send_mail', *['3330356463@qq.com', 'zhengtong0898@aliyun.com'])

queue_rpop/consumer1.py

import redis
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)


while True:
    email = r.rpop('queue:send_mail')
    print('[{} {} INFO]: {}'.format(
        dt.now(),
        'queue:send_mail',
        email
    ))

queue_rpop/consumer2.py

import redis
import time
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)


def send_mail(email):
    print('[{} {} INFO]: send mail to {}'.format(
        dt.now(),
        'queue:send_mail',
        email
    ))

if __name__ == '__main__':

    while True:
        mail = r.rpop('queue:send_mail')
        if not mail:

            print('[{} {} INFO]: {}'.format(
                dt.now(),
                'queue:send_mail',
                mail
            ))

            time.sleep(1)
            continue
        send_mail(mail)

运行

# 运行consumer1.py
python consumer1.py
# 显示结果,这种方式对CPU消耗非常大,整体的IO消耗也很高。
[2017-04-26 18:59:31.822200 queue:send_mail INFO]: None
[2017-04-26 18:59:31.822700 queue:send_mail INFO]: None
[2017-04-26 18:59:31.822700 queue:send_mail INFO]: None
[2017-04-26 18:59:31.823200 queue:send_mail INFO]: None
[2017-04-26 18:59:31.823200 queue:send_mail INFO]: None
[2017-04-26 18:59:31.823700 queue:send_mail INFO]: None
[2017-04-26 18:59:31.824200 queue:send_mail INFO]: None
...
...
...


# 运行consumer2.py (为了降低没有必要的系统消耗)
python consumer2.py

# 再开一个窗口运行 producer.py
python producer.py

# 显示结果
[2017-04-26 19:15:29.695200 queue:send_mail INFO]: None
[2017-04-26 19:15:30.695700 queue:send_mail INFO]: None
[2017-04-26 19:15:31.695700 queue:send_mail INFO]: None
[2017-04-26 19:15:32.696700 queue:send_mail INFO]: None
[2017-04-26 19:15:33.697200 queue:send_mail INFO]: send mail to 3330356463@qq.com
[2017-04-26 19:15:33.697700 queue:send_mail INFO]: send mail to zhengtong0898@aliyun.com
[2017-04-26 19:15:33.698200 queue:send_mail INFO]: None
[2017-04-26 19:15:34.698700 queue:send_mail INFO]: None
[2017-04-26 19:15:35.699200 queue:send_mail INFO]: None

 

堵塞读取(brpop)

redis内部并没有采用非堵塞的socket模型,因此初步判断它是一个堵塞请求,它的等待机制是由redis内部来负责响应的。堵塞让资源消耗更少,逻辑撰写更容易。

queue_brpop/consumer.py

import redis
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)


def send_mail(email):
    print('[{} {} INFO]: send mail to {}'.format(
        dt.now(),
        'queue:send_mail',
        email
    ))

if __name__ == '__main__':

    while True:
        queue_name, mail = r.brpop('queue:send_mail')
        send_mail(mail)

运行

# 运行queue_brpop/consumer.py
python queue_brpop/consumer.py

# 运行queue_rpop/producer.py

# 显示结果(没有多余的输出,挺好!)
[2017-04-26 19:31:23.947200 queue:send_mail INFO]: send mail to 3330356463@qq.com
[2017-04-26 19:31:23.947700 queue:send_mail INFO]: send mail to zhengtong0898@aliyun.com
优先级(lpush、blpop)

最普遍和常见的新增列表列表元素是在当前列表后面追加元素,取值的话则是从左到右读取,这种行为在消息队列中被称为先进先出(FIFO);那也会有一些场景要求后进先出(LIFO),这就需要利用lpush(从左边开始插入元素)和blpop(从左边开始读取)。

quque_priority/producer.py

import redis

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)

# 清空所有键
for number, key in enumerate(r.keys()):
    r.delete(key)

# 准备数据
r.lpush('queue:send_mail', '3330356463@qq.com')
r.lpush('queue:send_mail', 'zhengtong0898@aliyun.com')
r.lpush('queue:send_mail', 'zhengtong0898@a.com')
r.lpush('queue:send_mail', 'zhengtong0898@b.com')
r.lpush('queue:send_mail', 'zhengtong0898@c.com')
r.lpush('queue:send_mail', 'zhengtong0898@d.com')
r.lpush('queue:send_mail', 'zhengtong0898@e.com')

queue_priority/consumer.py

import redis
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)


def send_mail(email):
    print('[{} {} INFO]: send mail to {}'.format(
        dt.now(),
        'queue:send_mail',
        email
    ))

if __name__ == '__main__':

    while True:
        queue_name, mail = r.blpop('queue:send_mail')
        send_mail(mail)

运行

# 运行producer.py,先将数据塞到redis列表中(每次都是从左边插入)
python queue_priority/producer.py

# 运行consumer.py,消费数据(每次都是从左边读取)
python queue_priority/consumer.py

# 显示结果,仔细看就可以看得出来,确实是后进先出(LIFO)
[2017-04-26 20:29:18.735700 queue:send_mail INFO]: send mail to zhengtong0898@e.com
[2017-04-26 20:29:18.735700 queue:send_mail INFO]: send mail to zhengtong0898@d.com
[2017-04-26 20:29:18.736200 queue:send_mail INFO]: send mail to zhengtong0898@c.com
[2017-04-26 20:29:18.736700 queue:send_mail INFO]: send mail to zhengtong0898@b.com
[2017-04-26 20:29:18.736700 queue:send_mail INFO]: send mail to zhengtong0898@a.com
[2017-04-26 20:29:18.737200 queue:send_mail INFO]: send mail to zhengtong0898@aliyun.com
[2017-04-26 20:29:18.737700 queue:send_mail INFO]: send mail to 3330356463@qq.com

 
 

发布/订阅

消息队列是将消息放在列表中,由一个或多个consumer去消费列表中不同的元素;而发布/订阅是将消息放在一个频道中,有一个或多个consumer去消费频道中相同的元素;若该频道中没有任何consumer,这次producer生产了一条消息放入到频道中,这条消息将会自动消失,因此发布/订阅模式要求consumer必须时刻运行,否则producer发送的任何消息都是无效的。

publish_subscribe/producer.py

import redis
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)

r.publish('channel1.1', 'hi')
r.publish('channel1.1', 'my')
r.publish('channel1.1', 'name')
r.publish('channel1.1', 'is')
r.publish('channel1.1', 'publisher')

publish_subscribe/consumer.py

import redis
import time
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)
p = r.pubsub()
p.subscribe('channel1.1')    # 支持同时订阅多个频道: p.subscribe('channel1.1', 'channel1.2')

while True:
    msg = p.get_message(ignore_subscribe_messages=True)
    if not msg:
        time.sleep(1)
        print('sleep 1')
        continue
    print('debug: ', msg)

运行

# 打开两个窗口运行两次 consumer.py, 都订阅'channel1.1'频道.
python publish_subscribe/consumer.py # 窗口一
python publish_subscribe/consumer.py # 窗口二

# 运行producer.py, 将消息塞到'channel1.1'频道.
python publish_subscribe/producer.py


# 显示结果(两边都同时存在)
[2017-04-27 13:01:17.712700 publish/subscribe INFO]: None
[2017-04-27 13:01:18.712700 publish/subscribe INFO]: None
[2017-04-27 13:01:19.712700 publish/subscribe INFO]: None
[2017-04-27 13:01:19.712700 publish/subscribe INFO]: {'data': 'hi', 'type': 'message', 'pattern': None, 'channel': 'channel1.1'}
[2017-04-27 13:01:19.712700 publish/subscribe INFO]: {'data': 'my', 'type': 'message', 'pattern': None, 'channel': 'channel1.1'}
[2017-04-27 13:01:19.712700 publish/subscribe INFO]: {'data': 'name', 'type': 'message', 'pattern': None, 'channel': 'channel1.1'}
[2017-04-27 13:01:19.712700 publish/subscribe INFO]: {'data': 'is', 'type': 'message', 'pattern': None, 'channel': 'channel1.1'}
[2017-04-27 13:01:19.712700 publish/subscribe INFO]: {'data': 'publisher', 'type': 'message', 'pattern': None, 'channel': 'channel1.1'}
[2017-04-27 13:01:20.713200 publish/subscribe INFO]: None
[2017-04-27 13:01:21.714200 publish/subscribe INFO]: None

主题订阅

除了订阅多个频道之外,redis也支持consumer通过glob通配符(psubscribe)来订阅不同主题的频道。

publish_psubscribe/producer.py

import redis
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)

r.publish('channel1.1', 'hi')
r.publish('channel1.2', 'my')
r.publish('channel1.3', 'name')
r.publish('channel1.4', 'is')
r.publish('channel1.5', 'publisher')

publish_psubscribe/consumer.py

import redis
import time
from datetime import datetime as dt

# 连接redis
r = redis.StrictRedis('192.168.1.124', decode_responses=True)
p = r.pubsub()
p.psubscribe('channel1.*')

while True:
    msg = p.get_message(ignore_subscribe_messages=True)
    if not msg:
        time.sleep(1)
        msg = None

    print('[{} {} INFO]: {}'.format(
        dt.now(),
        'publish/psubscribe',
        msg
    ))

运行

# 运行consumer.py
python publish_psubscribe/consumer.py

# 运行producer.py
publish_psubscribe/producer.py

# 显示结果
[2017-04-27 13:31:00.683700 publish/psubscribe INFO]: None
[2017-04-27 13:31:01.683700 publish/psubscribe INFO]: None
[2017-04-27 13:31:02.683700 publish/psubscribe INFO]: None
[2017-04-27 13:31:02.683700 publish/psubscribe INFO]: {'data': 'hi', 'type': 'pmessage', 'pattern': 'channel1.*', 'channel': 'channel1.1'}
[2017-04-27 13:31:02.683700 publish/psubscribe INFO]: {'data': 'my', 'type': 'pmessage', 'pattern': 'channel1.*', 'channel': 'channel1.2'}
[2017-04-27 13:31:02.683700 publish/psubscribe INFO]: {'data': 'name', 'type': 'pmessage', 'pattern': 'channel1.*', 'channel': 'channel1.3'}
[2017-04-27 13:31:02.683700 publish/psubscribe INFO]: {'data': 'is', 'type': 'pmessage', 'pattern': 'channel1.*', 'channel': 'channel1.4'}
[2017-04-27 13:31:02.683700 publish/psubscribe INFO]: {'data': 'publisher', 'type': 'pmessage', 'pattern': 'channel1.*', 'channel': 'channel1.5'}
[2017-04-27 13:31:03.683700 publish/psubscribe INFO]: None
[2017-04-27 13:31:04.683700 publish/psubscribe INFO]: None

参考

本文转载自:http://www.jianshu.com/p/52b695769fab

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
rt-thread的IPC机制之消息队列源码分析

消息队列是另一种常用的线程间通讯方式,它能够接收来自线程的不固定长度的消息,并把消息缓存在自己的内存空间中。其他线程也能够从消息队列中读取相应的消息,而当消息队列是空的时候,可以...

长平狐
2013/03/19
515
0
进程间通信(IPC)——消息队列

消息队列  消息队列是在消息的传输过程中保存消息的容器。消息队列管理器在将消息从它的源中继到它的目标时充当。队列的主要目的是提供路由并保证消息的传递;如果发送消息时接收者不可用,...

qq_38646470
05/02
0
0
RabbitMQ消息超时时间、队列消息超时时间、队列超时时间

一、为队列设置消息TTL TTL是 Time-To-Live 的缩写,指的是存活时间,RabbitMQ可以为每个队列设置消息的超时时间。 代码中声明如下: 只要给队列设置x-message-ttl 参数,就设定了该队列所有...

哲别0
07/03
0
0
消息队列属性及常见消息队列介绍

什么是消息队列? 消息队列是在消息的传输过程中保存消息的容器,用于接收消息并以文件的方式存储,一个队列的消息可以同时被多个消息消费者消费。分布式消息服务DMS则是分布式的队列系统,消...

中间件小哥
06/22
0
0
LINUX-进程间通信(二、消息队列)

LINUX进程间通信(一、命名管道与匿名管道) 消息队列概述 消息队列是消息的链接表,存放在内核中并由消息队列标识符表示。主要涉及到msgget(),msgsnd(),msgrcv(),msgctl()四个函数,在具...

sssssuuuuu666
2017/12/22
0
0

没有更多内容

加载失败,请刷新页面

加载更多

SharedPreferences 的使用,commit和apply两个方法的区别

SharedPreferences sp = getSharedPreferences("config",MODE_PRIVATE); //第一个参数:存储文件的名称,第二个参数文件的访问权限,通常MODE_PRIVATE是私有存储 sp.edit().putString("USERNAM...

lanyu96
16分钟前
1
0
02-《Apache Tomcat 9 User Guide》之简介

1.Introduction - 介绍 For administrators and web developers alike, there are some important bits of information you should familiarize yourself with before starting out. This d......

飞鱼说编程
20分钟前
1
0
关于maven的使用,这一篇基本就够了

2.1 关于maven 每一个工具的出现都有其历史意义,而Maven的出现则是开发者对于不同的项目都要有自己的Ant构建文件,而这些文件都各不相同,而且JAR被检入CVS(Concurrent Version System),...

小小明童鞋
22分钟前
16
0
从xtrabackup完整备份恢复单个innodb表

现在大多数同学在线上采取的备份策略都是xtrabackup全备+binlog备份,那么当某天某张表意外的删除那么如何从xtrabackup全备中恢复呢?从mysql 5.6版本开始,支持可移动表空间(Transportable...

IT--小哥
26分钟前
1
0
百度AI攻城狮,用TensorFlow API训练目标检测模型(浣熊超可爱)

今天,人工智能正影响我们生产、生活的方方面面。10月10日,为期三天的2018华为全联接大会在上海拉开帷幕,此次大会以“+智能,见未来”为主题,发布了AI战略及全球领先的全栈全场景AI解决方...

Python唱情歌
27分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部