文档章节

oracle分析函数Rank, Dense_rank, row_number

源远流长-泉
 源远流长-泉
发布于 2017/06/17 10:59
字数 1600
阅读 7
收藏 0

其他函数 Oracle应用专题之:分析函数3(Top/Bottom N、First/Last、NTile)

http://www.blogjava.net/pengpenglin/archive/2008/06/27/211019.html

 

1.使用rownum为记录排名
2.使用分析函数来为记录排名
3.使用分析函数为记录进行分组排名

一、使用rownum为记录排名:

在前面一篇《Oracle开发专题之:分析函数》,我们认识了分析函数的基本应用,现在我们再来考虑下面几个问题:

对所有客户按订单总额进行排名
按区域和客户订单总额进行排名
找出订单总额排名前13位的客户
找出订单总额最高、最低的客户
找出订单总额排名前25%的客户

按照前面第一篇文章的思路,我们只能做到对各个分组的数据进行统计,如果需要排名的话那么只需要简单地加上rownum不就行了吗?事实情况是否如此想象般简单,我们来实践一下。

【1】测试环境:

SQL> desc user_order;
 Name                                      
Null?    Type
 
----------------------------------------- -------- ----------------------------
 REGION_ID                                          NUMBER(2)
 CUSTOMER_ID                                  NUMBER(
2)
 CUSTOMER_SALES                          NUMBER


【2】测试数据:

SQL> select * from user_order order by customer_sales;

 REGION_ID CUSTOMER_ID CUSTOMER_SALES

---------- ----------- --------------
         5           1              151162
        10          29             903383
         6           7              971585
        10          28            986964
         9          21           1020541
         9          22           1036146
         8          16           1068467
         6           8            1141638
         5           3            1161286
         5           5            1169926
         8          19           1174421
         7          12           1182275
         7          11           1190421
         6          10           1196748
         6           9            1208959
        10          30          1216858
         5             2                1224992
           9             24              1224992
           9             23              1224992
          
8
          18           1253840
         7          15           1255591
         7          13           1310434
        10          27          1322747
         8          20           1413722
         6           6            1788836
        10          26          1808949
         5           4            1878275
         7          14           1929774
         8          17           1944281
         9          25           2232703

30 rows selected.


注意这里有3条记录的订单总额是一样的。假如我们现在需要筛选排名前12位的客户,如果使用rownum会有什么样的后果呢?

SQL> select rownum, t.*
  2    from (select * 
  
3            from user_order
  
4           order by customer_sales desc) t
  
5   where rownum <= 12
  6   order by customer_sales desc;

    ROWNUM  REGION_ID CUSTOMER_ID CUSTOMER_SALES

---------- ---------- ----------- --------------
         1          9                 25        2232703
         2          8                 17        1944281
         3          7                 14        1929774
         4          5                   4        1878275
         5         10                26        1808949
         6          6                   6        1788836
         7          8                 20        1413722
         8         10                27        1322747
         9          7                13        1310434
        10          7               15        1255591
        11          8               18        1253840
          12             5                     2          1224992

12 rows selected.


很明显假如只是简单地按rownum进行排序的话,我们漏掉了另外两条记录(参考上面的结果)。

二、使用分析函数来为记录排名:

针对上面的情况,Oracle从8i开始就提供了3个分析函数:rand,dense_rank,row_number来解决诸如此类的问题,下面我们来看看这3个分析函数的作用以及彼此之间的区别:

Rank,Dense_rank,Row_number函数为每条记录产生一个从1开始至N的自然数,N的值可能小于等于记录的总数。这3个函数的唯一区别在于当碰到相同数据时的排名策略。

ROW_NUMBER

Row_number函数返回一个唯一的值,当碰到相同数据时,排名按照记录集中记录的顺序依次递增。 

DENSE_RANK
Dense_rank函数返回一个唯一的值,除非当碰到相同数据时,此时所有相同数据的排名都是一样的。 

RANK
Rank函数返回一个唯一的值,除非遇到相同的数据时,此时所有相同数据的排名是一样的,同时会在最后一条相同记录和下一条不同记录的排名之间空出排名。

这样的介绍有点难懂,我们还是通过实例来说明吧,下面的例子演示了3个不同函数在遇到相同数据时不同排名策略:

SQL> select region_id, customer_id, sum(customer_sales) total,
  
2         rank() over(order by sum(customer_sales) desc) rank,
  
3         dense_rank() over(order by sum(customer_sales) desc) dense_rank,
  
4         row_number() over(order by sum(customer_sales) desc) row_number
  
5    from user_order
  
6   group by region_id, customer_id;

 REGION_ID CUSTOMER_ID      TOTAL       RANK DENSE_RANK ROW_NUMBER

---------- ----------- ---------- ---------- ---------- ----------
            
         
8          18                1253840         11         11         11
         5           2                 1224992         12         12         12
         9          23                1224992         12         12         13
         9          24                1224992         12         12         14
        10          30               1216858         15           13            15
   

30 rows selected.


请注意上面的绿色高亮部分,这里生动的演示了3种不同的排名策略:

①对于第一条相同的记录,3种函数的排名都是一样的:12

②当出现第二条相同的记录时,Rank和Dense_rank依然给出同样的排名12;而row_number则顺延递增为13,依次类推至第三条相同的记录

③当排名进行到下一条不同的记录时,可以看到Rank函数在12和15之间空出了13,14的排名,因为这2个排名实际上已经被第二、三条相同的记录占了。而Dense_rank则顺序递增。row_number函数也是顺序递增

比较上面3种不同的策略,我们在选择的时候就要根据客户的需求来定夺了:

假如客户就只需要指定数目的记录,那么采用row_number是最简单的,但有漏掉的记录的危险

假如客户需要所有达到排名水平的记录,那么采用rankdense_rank是不错的选择。至于选择哪一种则看客户的需要,选择dense_rank或得到最大的记录

三、使用分析函数为记录进行分组排名:

上面的排名是按订单总额来进行排列的,现在跟进一步:假如是为各个地区的订单总额进行排名呢?这意味着又多了一次分组操作:对记录按地区分组然后进行排名。幸亏Oracle也提供了这样的支持,我们所要做的仅仅是在over函数中order by的前面增加一个分组子句:partition by region_id。

SQL> select region_id, customer_id, 
               
sum(customer_sales) total,
  
2         rank() over(partition by region_id
                        order by sum(customer_sales) desc) rank,
  
3         dense_rank() over(partition by region_id
                        order by sum(customer_sales) desc) dense_rank,
  
4         row_number() over(partition by region_id
                        order by sum(customer_sales) desc) row_number

  
5    from user_order
  
6   group by region_id, customer_id;

 REGION_ID CUSTOMER_ID      TOTAL       RANK DENSE_RANK ROW_NUMBER

---------- ----------- ---------- ---------- ---------- ----------
         5           4                1878275          1          1          1
         5           2                1224992          2          2          2
         5           5                1169926          3          3          3
         6           6                1788836          1          1          1
         6           9                1208959          2          2          2
         6          10               1196748          3          3          3       
 


30 rows selected.


现在我们看到的排名将是基于各个地区的,而非所有区域的了!Partition by 子句在排列函数中的作用是将一个结果集划分成几个部分,这样排列函数就能够应用于这各个子集。

前面我们提到的5个问题已经解决了2个了(第1,2),剩下的3个问题(Top/Bottom N,First/Last, NTile)会在下一篇讲解。

本文转载自:http://www.cnblogs.com/wuyisky/archive/2010/02/24/oracle_rank.html

源远流长-泉
粉丝 0
博文 25
码字总数 3661
作品 0
私信 提问
Oracle开窗函数笔记及应用场景

介绍Oracle的开窗函数之前先介绍一下分析函数,因为开窗函数也属于分析函数 分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个组返回多行,而聚合函数对于每个组只返...

smileNicky
2018/12/30
0
0
oracle分析函数Rank, Dense_rank, row_number

一、使用rownum为记录排名: 在前面一篇《Oracle开发专题之:分析函数》,我们认识了分析函数的基本应用,现在我们再来考虑下面几个问题: ①对所有客户按订单总额进行排名 ②按区域和客户订...

Hyacinth_Yuan
2015/12/25
192
0
oracle的分析函数‘over’

分析函数语法: 例: sum(sal) over (partition by deptno order by ename) new_alias sum就是函数名 (sal)是分析函数的参数,每个函数有0~3个参数,参数可以是表达式,例如:sum(sal+comm) over...

0o清风徐来o0
2012/10/22
377
0
SQL优化--使用分析函数

前段时间在 http://www.itput.net/ 看到 一篇文章, http://www.itpub.net/thread-1031306-1-4.html 提到一个SQL语句: 建立环境: create table t_emp(id numeric(10) ,name varchar(10), s......

梅_95
2016/09/13
17
0
oracle 函数之分析函数

1.分析函数有4个 over rownumber denserank rank 四个 不能单独使用2.select empno, sal ,deptno,sum(sal) over(order by empno) , sum(sal) over() from emp; 视图如下 按照工资进行累加3 s......

天使不凡
2017/12/30
0
0

没有更多内容

加载失败,请刷新页面

加载更多

java快递电子面单打印接口对接demo

之前的后天管理系统的电子面单打印使用的是灵通打单。 使用相对比较麻烦,需要到处Excel之后再导入,麻烦。 快递鸟有电子面单api,后台系统直接对接很是方便,不过也遇到了好些问题。 不难是...

程序的小猿
29分钟前
4
0
fasjtjson文档

https://github.com/alibaba/fastjson/wiki/JSONField

jirak
29分钟前
4
0
Mybatis中插入多条记录

Oracle数据库 实现方法 <insert id="saveWithdrawLog"> INSERT ALL INTO OSM_TRADE_DETAIL(SID,MBR_ID,USR_ID,TRADE_MONEY,TRADE_TYPE,TRADE_TIME,TRADE_WAY,PAY_ID) VALUES(#{si......

豫华商
30分钟前
5
0
Flink on YARN(下):常见问题与排查思路

作者:杨弢(搏远) Flink 支持 Standalone 独立部署和 YARN、Kubernetes、Mesos 等集群部署模式,其中 YARN 集群部署模式在国内的应用越来越广泛。Flink 社区将推出 Flink on YARN 应用解读...

开源中国小二
31分钟前
4
0
技术沙龙|京东云端到端多媒体关键技术揭秘

编者按:从带来更高编码效率、更好的用户体验的京享高清,到直播架构与网络演进优化,从而为用户带来更流畅的观看体验,以及运维系统的异常自动修复和高弹性的多媒体存储架构,一层一层展示出...

京东云技术新知
32分钟前
6
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部