文档章节

HiveQL计算连续天数问题

K_Zhiqiang
 K_Zhiqiang
发布于 2017/08/10 10:59
字数 826
阅读 35
收藏 0

现有商户每日交易汇总数据文件merch_trade_stat.txt,如下:(三列数据以','分隔,分别是商户ID、交易日期、日交易金额)

[root@node1 ~]$ more merch_trade_day_stat.txt
1,2017-07-01,100
1,2017-07-02,200
1,2017-07-03,300
1,2017-07-04,400
1,2017-07-05,500
1,2017-07-06,600
1,2017-07-07,40
1,2017-07-08,800
1,2017-07-09,900
1,2017-07-10,50
1,2017-07-11,100
1,2017-07-12,80
1,2017-07-13,300
1,2017-07-14,400
1,2017-07-15,500
2,2017-07-01,100
2,2017-07-02,200
2,2017-07-03,300
2,2017-07-04,60
2,2017-07-05,500
2,2017-07-06,600
2,2017-07-07,40
2,2017-07-08,800
2,2017-07-09,900
2,2017-07-10,50
2,2017-07-11,100
2,2017-07-12,80
2,2017-07-13,300
2,2017-07-14,400
2,2017-07-15,500

计算出每个商户日交易金额不小于100的最大连续天数:

hive> CREATE TABLE merch_trade_day_stat(
    >     merch_id string COMMENT '商户ID',
    >     date_key string COMMENT '交易日期',
    >     tx_amt int COMMENT '日交易金额'
    > ) ROW FORMAT DELIMITED
    >  FIELDS TERMINATED BY ',';
OK
Time taken: 0.375 seconds
hive> load data local inpath 'merch_trade_day_stat.txt' into table merch_trade_day_stat;
Loading data to table default.merch_trade_day_stat
Table default.merch_trade_day_stat stats: [numFiles=1, totalSize=443]
OK
Time taken: 0.45 seconds
hive> select * from merch_trade_day_stat;
OK
1	2017-07-01	100
1	2017-07-02	200
1	2017-07-03	300
1	2017-07-04	400
1	2017-07-05	500
1	2017-07-06	600
1	2017-07-07	40
1	2017-07-08	800
1	2017-07-09	900
1	2017-07-10	50
1	2017-07-11	100
1	2017-07-12	80
1	2017-07-13	300
1	2017-07-14	400
1	2017-07-15	500
2	2017-07-01	100
2	2017-07-02	200
2	2017-07-03	300
2	2017-07-04	60
2	2017-07-05	500
2	2017-07-06	600
2	2017-07-07	40
2	2017-07-08	800
2	2017-07-09	900
2	2017-07-10	50
2	2017-07-11	100
2	2017-07-12	80
2	2017-07-13	300
2	2017-07-14	400
2	2017-07-15	500
Time taken: 0.069 seconds, Fetched: 30 row(s)
hive> select a.merch_id,
    >        max(a.continue_days) as max_continue_days
    >     from(select a.merch_id,
    >                 count(a.date_key) as continue_days
    >             from(select merch_id,
    >                         date_key,
    >                         date_sub(date_key, row_number() over(partition by merch_id order by date_key)) as tmp_date
    >                     from merch_trade_day_stat
    >                     where tx_amt >= 100
    >                 ) a
    >             group by a.merch_id, a.tmp_date
    >         ) a
    >     group by a.merch_id;
Query ID = bd_20170810104913_29569c95-1110-4ed4-906e-b09ba6712ac7
Total jobs = 2
Launching Job 1 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1499860627544_0066, Tracking URL = http://ali-bj01-tst-cluster-004.xiweiai.cn:8088/proxy/application_1499860627544_0066/
Kill Command = /mnt/bd/software/hadoop/hadoop-2.6.2/bin/hadoop job  -kill job_1499860627544_0066
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2017-08-10 10:49:18,583 Stage-1 map = 0%,  reduce = 0%
2017-08-10 10:49:24,792 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.26 sec
2017-08-10 10:49:29,929 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 2.85 sec
MapReduce Total cumulative CPU time: 2 seconds 850 msec
Ended Job = job_1499860627544_0066
Launching Job 2 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1499860627544_0067, Tracking URL = http://ali-bj01-tst-cluster-004.xiweiai.cn:8088/proxy/application_1499860627544_0067/
Kill Command = /mnt/bd/software/hadoop/hadoop-2.6.2/bin/hadoop job  -kill job_1499860627544_0067
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 1
2017-08-10 10:49:40,581 Stage-2 map = 0%,  reduce = 0%
2017-08-10 10:49:44,691 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 0.74 sec
2017-08-10 10:49:49,826 Stage-2 map = 100%,  reduce = 100%, Cumulative CPU 1.93 sec
MapReduce Total cumulative CPU time: 1 seconds 930 msec
Ended Job = job_1499860627544_0067
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 2.85 sec   HDFS Read: 9593 HDFS Write: 321 SUCCESS
Stage-Stage-2: Map: 1  Reduce: 1   Cumulative CPU: 1.93 sec   HDFS Read: 6039 HDFS Write: 8 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 780 msec
OK
1	6
2	3
Time taken: 37.05 seconds, Fetched: 2 row(s)

© 著作权归作者所有

共有 人打赏支持
K_Zhiqiang
粉丝 0
博文 22
码字总数 12098
作品 0
海淀
程序员
oracle计算连续登陆/上班天数

现在有一个计算用户连续上班天数的报表,发现通过用row_number分析函数可以完美计算这个问题。 这个SQL可以解决计算用户连续登陆、签到、上班、旷工等问题。 首先将row_number按照日期排序 ...

zxf261
2016/07/21
0
0
sql技巧(三)在线时长|最大连续登陆天数

1.在线时长 正常的游戏有登录和登出但是我们想计算下在线时长,这就涉及到根据登陆表的登录时间查找登出时间的问题,基本的原理是登陆表和登出表进行匹配,查找离一条登录记录最近的登出时间...

洛水青柳2017
2017/11/06
0
0
算法:如何计算当月签到最大天数?

其实这个问题有2个子问题: 1.如果我有一张表,有个字段叫做InsertTime,插入时间,插入时间一天可能有多个,假设我现在要统计一个月的个数,比如1号有2条记录,2号有3条记录,那么总共只算2...

KMSFan
2016/10/29
313
1
指数级加速架构搜索:CMU提出基于梯度下降的可微架构搜索方法

  选自arXiv   作者:刘寒骁、Karen Simonyan、杨一鸣   机器之心编译      寻找最优神经网络架构的任务通常需要机器学习专家花费大量时间来完成,最近人们提出的自动架构搜索方法...

机器之心
06/27
0
0
可能是github上第一款Vue全家桶+Typescript的完整项目

vue-ts-daily 基于Vue.js的2.5.13版本和TypeScript编写的模仿原生应用的WebApp. 👉项目演示地址欢迎star✨ ps: 服务器不在内地,加载可能慢点... 建议直接添加到主屏幕(ios端体验差一些). ...

寻找海蓝96
05/17
0
0

没有更多内容

加载失败,请刷新页面

加载更多

OSX | SafariBookmarksSyncAgent意外退出解决方法

1. 启动系统, 按住⌘-R不松手2. 在实用工具(Utilities)下打开终端,输入csrutil disable, 然后回车; 你就看到提示系统完整性保护(SIP: System Integrity Protection)已禁用3. 输入reboot回车...

云迹
今天
3
0
面向对象类之间的关系

面向对象类之间的关系:is-a、has-a、use-a is-a关系也叫继承或泛化,比如大雁和鸟类之间的关系就是继承。 has-a关系称为关联关系,例如企鹅在气候寒冷的地方生活,“企鹅”和“气候”就是关...

gackey
今天
4
0
读书(附电子书)|小狗钱钱之白色的拉布拉多

关注公众号,在公众号中回复“小狗钱钱”可免费获得电子书。 一、背景 之前写了一篇文章 《小狗钱钱》 理财小白应该读的一本书,那时候我才看那本书,现在看了一大半了,发现这本书确实不错,...

tiankonguse
今天
4
0
Permissions 0777 for ‘***’ are too open

异常显示: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ WARNING: UNPROTECTED PRIVATE KEY FILE! @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ......

李玉长
今天
5
0
区块链10年了,还未落地,它失败了吗?

导读 几乎每个人,甚至是对通证持怀疑态度的人,都对区块链的技术有积极的看法,因为它有可能改变世界。然而,区块链技术问世已经10年了,我们仍然没有真正的用上区块链技术。 几乎每个人,甚...

问题终结者
今天
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部