Ubuntu 编译ffmpeg 实现GPU 转码

原创
2018/04/17 17:00
阅读数 2.8W

    前言,公司转码集群服务器资源有限,需要考虑GPU方案,本文记录下整个实现ffmpeg gpu 转码的过程。     

    该文章后续仍在不断的更新修改中, 请移步到原文地址http://dmwan.cc

环境:

DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_DESCRIPTION="Ubuntu 16.04.1 LTS"

注意,这里机器启动级别调低,不要加载桌面系统。

本机是2核4G 普通硬盘,gpu 型号:GTX950M

第一部分,安装cuda 8:

    1.1 查看是否有显卡:

lspci | grep -i nvidia

    1.2 查看操作系统是否cuda 官方支持:

uname -m && cat /etc/*release

    1.3 安装gcc g++ 等编译依赖基础库

apt-get install gcc g++ build-essential

    1.4 下载安装cuda

下载cuda:
wget --no-check-certificate https://developer.nvidia.com/compute/cuda/8.0/prod/local_installers/cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64-deb

安装 cuda 源:
dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64-deb

添加源:
deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 /

更新缓存:
apt-get update

安装cuda:
apt-get install cuda

    1.5 设置环境变量

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
source ~/.bashrc

    1.6 安装官方示例并验证环境

查看驱动信息:
cat /proc/driver/nvidia/version

安装官方示例:
cuda-install-samples-8.0.sh  ./

跑下示例:
cd NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release && ./deviceQuery

输出下面内容 Pass为安装成功:

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1080"
  CUDA Driver Version / Runtime Version          8.0 / 8.0
  CUDA Capability Major/Minor version number:    6.1
  Total amount of global memory:                 8112 MBytes (8506179584 bytes)
  (20) Multiprocessors, (128) CUDA Cores/MP:     2560 CUDA Cores
  GPU Max Clock rate:                            1734 MHz (1.73 GHz)
  Memory Clock rate:                             5005 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 2097152 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 3 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 1080
Result = PASS


第二部分,安装ffmpeg

    2.1 安装基础依赖:

apt-get update
apt-get -y install autoconf automake build-essential libass-dev libfreetype6-dev \
  libsdl2-dev libtheora-dev libtool libva-dev libvdpau-dev libvorbis-dev libxcb1-dev libxcb-shm0-dev \
  libxcb-xfixes0-dev pkg-config texinfo zlib1g-dev

    2.2 安装yasm 

apt-get install yasm #版本为1.3

    2.3 安装lib264

apt-get install libx264-dev #版本为148

    2.4 安装libx265(显卡不一定支持265编码)

apt-get install libx265-dev

    2.5 安装 libvpx

apt-get install libvpx-dev #版本为1.5

    2.6 安装 安装libfdk-aac

apt-get install libfdk-aac-dev # 无版本要求

    2.7 安装libmp3lam

apt-get install libmp3lame-dev

    2.8 安装libopus

apt-get install libopus-dev # 1.1.2

第三部分,安装NVENC:

    3.1 安装依赖:

sudo apt-get -y install glew-utils libglew-dbg libglew-dev libglew1.13 \
libglewmx-dev libglewmx-dbg freeglut3 freeglut3-dev freeglut3-dbg libghc-glut-dev \
libghc-glut-doc libghc-glut-prof libalut-dev libxmu-dev libxmu-headers libxmu6 \
libxmu6-dbg libxmuu-dev libxmuu1 libxmuu1-dbg

    3.2 下载ffmpeg

git clone https://github.com/FFmpeg/FFmpeg ffmpeg -b master

    3.3 下载nvidia video sdk

下载地址:https://developer.nvidia.com/nvidia-video-codec-sdk#Download,这里版本8.0, 解压后命名为 nv_sdk, 与ffmpeg 放于同文件夹。

    3.4 移动头文件

cp -r nv_sdk/LegacySamples/common/inc/ /usr/include/

第四部分,编译ffmpeg

编译命令如下:

export PKG_CONFIG_PATH=/usr/lib/x86_64-linux-gnu/pkgconfig
PATH="$HOME/bin:$PATH"   ./configure \
    --bindir="$HOME/bin" \
    --enable-gpl \
    --enable-libass \
    --enable-libfdk-aac \
    --enable-libfreetype \
    --enable-libmp3lame \
    --enable-libopus \
    --enable-libtheora \
    --enable-libvorbis \
    --enable-libvpx \
    --enable-libx264 \
    --enable-libx265 \
    --enable-nonfree \
    --extra-cflags=-I../nv_sdk \
    --extra-ldflags=-L../nv_sdk \
    --extra-cflags="-I/usr/local/cuda/include/" \
    --extra-ldflags=-L/usr/local/cuda/lib64 \
    --disable-shared \
    --enable-nvenc \
    --enable-cuda \
    --enable-cuvid \
    --enable-libnpp 

PATH="$HOME/bin:$PATH" make -j$(nproc)
make -j$(nproc) install
make -j$(nproc) distclean
hash -r

第五部分,转码测试:

ffmpeg -i input.flv -c:v h264_nvenc -c:a aac output.mp4

倍速对比,同样硬件条件下,gpu 提速在7-8倍左右。

frame=21022 fps=398 q=21.0 Lsize=  232698kB time=00:14:36.75 bitrate=2174.2kbits/s dup=137 drop=0 speed=16.6x

播放试了下播放效果,和cpu 播放无明显差别。

展开阅读全文
打赏
4
71 收藏
分享
加载中

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?

引用来自“Feng_Yu”的评论

如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多

引用来自“haitaosoft”的评论

现在就是不知道 很弱的显卡与普通的cpu,在视频这么重复性的工作上,是不是仍然有性能优势。。。。

引用来自“Feng_Yu”的评论

性能上的优势也是高端显卡才有话语权,低端显卡的图形渲染能力比较差,没什么优势。

另外,GPU编码速度快也有一部分牺牲压缩率换来的。所以你的GPU很一般的话,还是考虑上个比较好的CPU走软件编码吧

引用来自“haitaosoft”的评论

关于各种显卡、cpu、芯显的视频压缩性能,有没有类似天梯的数据图表?

引用来自“Feng_Yu”的评论

这个直接看CPU和GPU的天梯图就行了,差不多的。
以前的天梯不会同时比较CPU和GPU啊
2018/04/22 11:19
回复
举报

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?

引用来自“Feng_Yu”的评论

如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多

引用来自“haitaosoft”的评论

现在就是不知道 很弱的显卡与普通的cpu,在视频这么重复性的工作上,是不是仍然有性能优势。。。。

引用来自“Feng_Yu”的评论

性能上的优势也是高端显卡才有话语权,低端显卡的图形渲染能力比较差,没什么优势。

另外,GPU编码速度快也有一部分牺牲压缩率换来的。所以你的GPU很一般的话,还是考虑上个比较好的CPU走软件编码吧

引用来自“haitaosoft”的评论

关于各种显卡、cpu、芯显的视频压缩性能,有没有类似天梯的数据图表?
这个直接看CPU和GPU的天梯图就行了,差不多的。
2018/04/21 17:40
回复
举报

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?

引用来自“Feng_Yu”的评论

如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多

引用来自“haitaosoft”的评论

现在就是不知道 很弱的显卡与普通的cpu,在视频这么重复性的工作上,是不是仍然有性能优势。。。。

引用来自“Feng_Yu”的评论

性能上的优势也是高端显卡才有话语权,低端显卡的图形渲染能力比较差,没什么优势。

另外,GPU编码速度快也有一部分牺牲压缩率换来的。所以你的GPU很一般的话,还是考虑上个比较好的CPU走软件编码吧
关于各种显卡、cpu、芯显的视频压缩性能,有没有类似天梯的数据图表?
2018/04/20 22:39
回复
举报

引用来自“鼎铭”的评论

引用来自“haitaosoft”的评论

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?

引用来自“Feng_Yu”的评论

如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多
现在就是不知道 很弱的显卡与普通的cpu,在视频这么重复性的工作上,是不是仍然有性能优势。。。。

回复@haitaosoft : 你们是什么场景啊
就是普通不玩游戏的i5电脑,偶尔压缩一下视频
2018/04/20 22:37
回复
举报

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?

引用来自“Feng_Yu”的评论

如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多

引用来自“haitaosoft”的评论

现在就是不知道 很弱的显卡与普通的cpu,在视频这么重复性的工作上,是不是仍然有性能优势。。。。
性能上的优势也是高端显卡才有话语权,低端显卡的图形渲染能力比较差,没什么优势。

另外,GPU编码速度快也有一部分牺牲压缩率换来的。所以你的GPU很一般的话,还是考虑上个比较好的CPU走软件编码吧
2018/04/20 21:05
回复
举报
caucy博主

引用来自“haitaosoft”的评论

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?

引用来自“Feng_Yu”的评论

如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多
现在就是不知道 很弱的显卡与普通的cpu,在视频这么重复性的工作上,是不是仍然有性能优势。。。。

回复@haitaosoft : 你们是什么场景啊
2018/04/20 17:27
回复
举报

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?

引用来自“Feng_Yu”的评论

如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多
现在就是不知道 很弱的显卡与普通的cpu,在视频这么重复性的工作上,是不是仍然有性能优势。。。。
2018/04/20 17:06
回复
举报

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?
如果显卡性能远远弱于CPU性能的话,真没必要追求GPU编码,还是老老实实的用CPU编码吧,质量和压缩率比GPU有优势的多
2018/04/19 21:05
回复
举报

引用来自“haitaosoft”的评论

没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?
集显也是GPU,intel的集成显卡就支持硬件编解码,通过qsv技术。ffmpeg也可以通过编译qsv支持使用qsv技术GPU编码视频的,了解一下: https://trac.ffmpeg.org/wiki/HWAccelIntro
2018/04/19 21:01
回复
举报
没有显卡的i5机器,利用集成芯显(如hd4600),能比cpu快吗?
2018/04/19 17:20
回复
举报
更多评论
打赏
25 评论
71 收藏
4
分享
返回顶部
顶部