文档章节

Coding and Paper Letter(十二)

胖胖雕
 胖胖雕
发布于 08/16 23:07
字数 1157
阅读 25
收藏 0

资源整理。<!-- more -->

1 Coding:

1.R语言生成的ppt,GeoStat2018会议报告,时空模式分析的报告。

geostat18

2.欧空局哨兵和SMOS的工具集,关于对地观测数据的处理与分析的docker容器。

docker esa snap

3.R语言包ggmapstyles,一个R包可以切换各种不同风格的地图。

ggmapstyles

4.地理空间的docker镜像并且打包成AWS(亚马逊云服务器)的linux系统。

geolamda

5.R语言包ggrastr,ggplot2的拓展包,专门针对栅格几何图形。

ggrastr

6.一系列关于使用Google Earth Engine(GEE)的工具(javascript)。

geetools code editor

7.R语言教程展示如何构建一个简单的ABM模型。

cultural evolution ABM tutorial

8.基于Python API的Google Earth Engine(GEE)的最佳可获取像素组合。

geebap

9.R语言包caiman,冠层照片分析。

caiman

10.R语言包imager,专门用做图像处理的R包。

imager

11.基于neo4j的推荐引擎模块。

neo4j reco

12.高性能,易用且可扩展的机器学习包(C ++,Python,R)。

xlearn

13.将光线应用到rgl的绝对坐标上。

montereybayshader

14.将shapefile转换为json文件。

shapefile js

15.基于R的贝叶斯分析模板。

bayesian template

16.R语言包autoxgboost,自动调整和安装xgboost的R包。

autoxgboost

2 Paper:

1.Air Quality Monitoring Network Design Optimisation for Robust Land Use Regression Models/鲁棒土地利用回归模型的空气质量监测网络优化设计

为了解空气污染对健康的影响,一个非常普遍的流行病学研究是可用的暴露数据质量。许多流行病学研究依赖于经验建模技术,例如土地利用回归(LUR)来评估环境空气暴露。以前的研究已经以临时的方式定位监测站,有利于它们在交通“热点”中的位置,或者在主观上被认为对土地使用和人口感兴趣的区域。然而,监测站的临时安置可能导致长期暴露分析的不明智决定。本文介绍了一种识别空气质量监测站位置的系统方法。它结合了LUR的灵活性和将权重放在优先区域(如人口密集区域)的能力,以最小化空间平均预测误差。在研究区域测试方法已经表明它导致平均预测误差的显着下降(没有空间权重的情况下为99.87%;在研究区域中具有空间权重的99.94%)。这项工作的结果可以指导网站的选择,同时扩展或创建空气质量监测网络,以实现稳健的LUR估算,同时将预测误差降至最低。土地利用回归模型是一个比较常用的环境大气污染监测建模模型。这篇文章不仅仅是从模型角度对模型改进,还针对空气质量监测网络做了优化。

2.Partitioning evapotranspiration using an optimized satellite-based ET model across biomes/使用优化的基于卫星的ET模型在生物群系中划分蒸散

蒸散(ET)的划分是陆地水平衡和全球水循环的关键因素,了解陆地生物群落的划分以及ET划分与潜在影响因素之间的关系对于预测未来的生态系统反馈至关重要。基于优化的Priestly-Taylor喷射推进实验室模型,我们将ET分为三个组成部分蒸腾(T),冠层拦截蒸发(EI)和土壤蒸发(ES)。我们发现EI的成分是显着的,不同生物群落中EI与降水的比率在0.02到0.29之间。 T / ET比率范围为0.29至0.72,生物群落之间存在明显差异,且比率通常低于先前使用同位素方法的研究。 (T + EI)/ ET比率被限制在从0.57到0.86的相对窄的范围内。随着年降水量的增加,T / ET值呈明显下降趋势,但T / ET与年叶面积指数之间无显着相关性。蒸散是生态系统中很关键的一个组成,近些年来很多研究都是针对ET的。这个文章将ET更好地与生物群落结合在一起,值得一度,发表在农林科学top期刊Agricultural and Forest Meteorology上。

© 著作权归作者所有

共有 人打赏支持
胖胖雕
粉丝 3
博文 82
码字总数 168894
作品 0
厦门
其他
计算机视觉、机器学习相关领域论文和源代码大集合

一、特征提取Feature Extraction: · SIFT [1] [Demo program][SIFT Library] [VLFeat] · PCA-SIFT [2] [Project] · Affine-SIFT [3] [Project] · SURF [4] [OpenSURF] [Matlab Wrapper]......

wangdy
2016/08/02
213
0
计算机视觉、机器学习相关领域论文和源代码大集合

注:下面有project网站的大部分都有paper和相应的code。Code一般是C/C++或者Matlab代码。 最近一次更新:2013-3-17 一、特征提取Feature Extraction: · SIFT [1] [Demo program][SIFT Lib...

moki_oschina
2015/01/15
0
0
Coding and Paper Letter(一)

最近发现需要在快速阅读背景下,对快餐式资源做整理与收集。以Coding(以Github)和Paper(自己看到的一些论文,论文一般主要看题目和摘要做些简单小结)的资源为主。 1 Coding: 1.QGIS上的...

胖胖雕
07/07
0
0
Coding and Paper Letter(十三)

资源整理。 1 Coding: 1.R语言包mapdeck,使用mapbox GL和deck.gl的交互式地图可视化包。 mapdeck 2.R语言包spatsoc,检测GPS轨迹重定位里的时空分组的包,从而构建基于邻近度的网络。 spat...

胖胖雕
08/23
0
0
二、Python基础---循环--条件判断(while-for-if-elif-else)

!!!语句!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1.代码实例: #if语句 #!/usr/bin/python3 #*coding:utf-8* num...

高鹏举
06/26
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Windows 下双 Python 开发环境配置

Windows 下双 Python 开发环境配置作者:老农民(刘启华)QQ: 46715422Email: 46715422@qq.com微信: 46715422 本人曾经在 Windows 下被两个版本环境折腾够呛,现在总结两个 Python...

新疆老农民
昨天
0
0
CentOS7全局安装composer

1. 下载composer-setup.php到当前目录 php -r "copy('https://install.phpcomposer.com/installer', 'composer-setup.php');" 2. 安装 php composer-setup.php 3. 将composer设置成全局 mv c......

月夜中徘徊
昨天
1
0
20180920上课截图

小丑鱼00
昨天
1
0
基于TCP的远程服务调用

前言 上篇,分析了基于HTTP方式的RPC调用。本篇将在上篇的基础上,分析基于TCP方式的RPC调用。代码的整体思路是一致的,可以看作是在上篇功能上的扩展——即通信的方式。 代码:https://git...

MarvelCode
昨天
1
0
67:shell脚本介绍 | shell脚本结构 | 执行data命令用法 | shell脚本中变量

1、shell脚本介绍: shell是一种脚本语言和传统的开发语言相比,会比较简单: shell有自己语法,可以支持逻辑判断、循环等语法: 可以自定义函数,目的是减少重复的代码: shell是系统命令的集合...

芬野de博客
昨天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部