文档章节

2分钟读懂Hadoop和Spark的异同

深夜里写琴弹代码的人
 深夜里写琴弹代码的人
发布于 2017/04/06 00:40
字数 1101
阅读 20
收藏 0

谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生。但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同。

2分钟读懂大数据框架Hadoop和Spark的异同

解决问题的层面不一样

首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。

同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理(查询/写入)的工具,它并不提供分布式数据的存储。(因为Spark没有内嵌数据库,而Hadoop内嵌Hbase数据库。

两者可合可分

Hadoop除了提供为大家所共识的HDFS分布式数据存储功能之外,还提供了叫做MapReduce的数据处理功能。所以这里我们完全可以抛开Spark,使用Hadoop自身的MapReduce来完成数据的处理。

相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,毕竟它没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作。这里我们可以选择Hadoop的HDFS,也可以选择其他的基于云的数据系统平台。但Spark默认来说还是被用在Hadoop上面的,毕竟,大家都认为它们的结合是最好的。

 

=========================================

以下是从网上摘录的对MapReduce的最简洁明了的解析:

  我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。

现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。

Spark数据处理速度秒杀MapReduce(Spark下的speed对于MapReduce做了扩展,用于快速数据处理)

Spark因为其处理数据的方式不一样,会比MapReduce快上很多。MapReduce是分步对数据进行处理的: ”从集群中读取数据,进行一次处理,将结果写到集群,从集群中读取更新后的数据,进行下一次的处理,将结果写到集群,等等…“ Booz Allen Hamilton的数据科学家Kirk Borne如此解析。

反观Spark,它会在内存中以接近“实时”的时间完成所有的数据分析:“从集群中读取数据,完成所有必须的分析处理,将结果写回集群,完成,” Born说道。Spark的批处理速度比MapReduce快近10倍,内存中的数据分析速度则快近100倍。

如果需要处理的数据和结果需求大部分情况下是静态的,且你也有耐心等待批处理的完成的话,MapReduce的处理方式也是完全可以接受的。

但如果你需要对流数据进行分析,比如那些来自于工厂的传感器收集回来的数据,又或者说你的应用是需要多重数据处理的,那么你也许更应该使用Spark进行处理。

大部分机器学习算法都是需要多重数据处理的。此外,通常会用到Spark的应用场景有以下方面:实时的市场活动,在线产品推荐,网络安全分析,机器日记监控等。

灾难恢复

两者的灾难恢复方式迥异,但是都很不错。因为Hadoop将每次处理后的数据都写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理。

Spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集(RDD: Resilient Distributed Dataset)中。“这些数据对象既可以放在内存,也可以放在磁盘,所以RDD同样也可以提供完成的灾难恢复功能,”Borne指出。

本文转载自:http://www.techweb.com.cn/network/system/2016-01-25/2267414.shtml

深夜里写琴弹代码的人
粉丝 1
博文 29
码字总数 8048
作品 0
西安
程序员
私信 提问
2 分钟读懂大数据框架 Hadoop 和 Spark 的异同

谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生。但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同。 解决问...

oschina
2016/06/02
72K
19
大数据框架Hadoop和Spark的异同

解决问题的层面不一样   首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施:它将巨大的数据集分派到一个由普通计算...

jbchen
2017/10/30
21
0
Airbnb 是如何通过 balanced Kafka reader 来扩展 Spark streaming 实时流处理能力的

文章目录 1 Airbnb 日志事件获取 2 挑战 3 解决方案 4 总结 Airbnb 日志事件获取 日志事件从客户端(例如移动应用程序和 Web 浏览器)和在线服务发出,其中包含行为或操作的关键信息。每个事...

Spark
05/19
0
0
Cloudera Developer之Spark 及 Hadoop 开发员培训(CCA-175)

学习如何将数据导入到 Apache Hadoop 机群并使用 Spark、Hive、Flume、Sqoop、Impala 及其他 Hadoop 生态系统工具对数据进行各种操作和处理分析。 培训详情地址:https://www.huodongjia.co...

活动家
2017/07/28
238
0
从Hadoop到Spark的架构实践

当下,Spark已经在国内得到了广泛的认可和支持:2014年,Spark Summit China在北京召开,场面火爆;同年,Spark Meetup在北京、上海、深圳和杭州四个城市举办,其中仅北京就成功举办了5次,内...

Emilypz
2015/10/10
1K
0

没有更多内容

加载失败,请刷新页面

加载更多

Excption与Error包结构,OOM 你遇到过哪些情况,SOF 你遇到过哪些情况

Throwable 是 Java 中所有错误与异常的超类,Throwable 包含两个子类,Error 与 Exception 。用于指示发生了异常情况。 Java 抛出的 Throwable 可以分成三种类型。 被检查异常(checked Exc...

Garphy
今天
6
0
计算机实现原理专题--二进制减法器(二)

在计算机实现原理专题--二进制减法器(一)中说明了基本原理,现准备说明如何来实现。 首先第一步255-b运算相当于对b进行按位取反,因此可将8个非门组成如下图的形式: 由于每次做减法时,我...

FAT_mt
昨天
6
0
好程序员大数据学习路线分享函数+map映射+元祖

好程序员大数据学习路线分享函数+map映射+元祖,大数据各个平台上的语言实现 hadoop 由java实现,2003年至今,三大块:数据处理,数据存储,数据计算 存储: hbase --> 数据成表 处理: hive --> 数...

好程序员官方
昨天
7
0
tabel 中含有复选框的列 数据理解

1、el-ui中实现某一列为复选框 实现多选非常简单: 手动添加一个el-table-column,设type属性为selction即可; 2、@selection-change事件:选项发生勾选状态变化时触发该事件 <el-table @sel...

everthing
昨天
6
0
【技术分享】TestFlight测试的流程文档

上架基本需求资料 1、苹果开发者账号(如还没账号先申请-苹果开发者账号申请教程) 2、开发好的APP 通过本篇教程,可以学习到ios证书申请和打包ipa上传到appstoreconnect.apple.com进行TestF...

qtb999
昨天
10
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部