矩阵乘法

原创
2019/07/30 15:48
阅读数 379

矩阵乘法(Matrix multiplication)最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。


定义
设A为 m x p 的矩阵,B为 p x n 的矩阵,那么称 m x n 的矩阵C为矩阵A与B的乘积,记作 C=AB ,其中矩阵C中的第 i行第 j列元素可以表示为:

如下所示:


注意事项
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。

2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。


基本性质
乘法结合律: (AB)C=A(BC)

乘法左分配律:(A+B)C=AC+BC 

乘法右分配律:C(A+B)=CA+CB 

对数乘的结合性k(AB)=(kA)B=A(kB).

转置 (AB)T=BTAT.

矩阵乘法一般不满足交换律 [3]  。

*注:可交换的矩阵是方阵。

 

展开阅读全文
加载中

作者的其它热门文章

打赏
0
0 收藏
分享
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部