tensorflow save checkpoint

2019/06/30 23:27
阅读数 712
#save to file

import tensorflow as tf
import  numpy as np

##(1)Save to file 把相关变量存储到文件中
#remember to define the same dtype and shape when restore
W = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name='weights')
b = tf.Variable([[1,2,3]],dtype=tf.float32,name='biases')

init = tf.initialize_all_variables()
saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init)
    save_path = saver.save(sess,"my_net/save_net.ckpt")
    print("Save to path : ",save_path)

##(2)restore variables 从文件中取出相关变量
#redefine the same shape and same type for you variables
W = tf.Variable(np.arange(6).reshape((2,3)),dtype=tf.float32,name="weights")#reshape((2,3):2行3列
b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32,name="biases")

#not need init step
saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess,"my_net/save_net.ckpt")
    print("weights: ",sess.run(W))
    print("biases: ",sess.run(b))

 

展开阅读全文
加载中

作者的其它热门文章

打赏
0
0 收藏
分享
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部