文档章节

主成分分析(PCA) Java

Harry_sir
 Harry_sir
发布于 2017/08/28 16:25
字数 1160
阅读 117
收藏 0

导入jar包:Jama-1.0.2.jar

//========计算类===========

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap;

import Jama.Matrix;

/*
 * 算法步骤:
 * 1)将原始数据按列组成n行m列矩阵X
 * 2)特征中心化。即每一维的数据都减去该维的均值,使每一维的均值都为0
 * 3)求出协方差矩阵
 * 4)求出协方差矩阵的特征值及对应的特征向量
 * 5)将特征向量按对应的特征值大小从上往下按行排列成矩阵,取前k行组成矩阵p
 * 6)Y=PX 即为降维到k维后的数据
 */
public class PCA {

    private static final double threshold = 0.95;// 特征值阈值

    /**
     * 
     * 使每个样本的均值为0
     * 
     * @param primary
     *            原始二维数组矩阵
     * @return averageArray 中心化后的矩阵
     */
    public double[][] changeAverageToZero(double[][] primary) {
        int n = primary.length;
        int m = primary[0].length;
        double[] sum = new double[m];
        double[] average = new double[m];
        double[][] averageArray = new double[n][m];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                sum[i] += primary[j][i];
            }
            average[i] = sum[i] / n;
        }
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                averageArray[j][i] = primary[j][i] - average[i];
            }
        }
        return averageArray;
    }

    /**
     * 
     * 计算协方差矩阵
     * 
     * @param matrix
     *            中心化后的矩阵
     * @return result 协方差矩阵
     */
    public double[][] getVarianceMatrix(double[][] matrix) {
        int n = matrix.length;// 行数
        int m = matrix[0].length;// 列数
        double[][] result = new double[m][m];// 协方差矩阵
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < m; j++) {
                double temp = 0;
                for (int k = 0; k < n; k++) {
                    temp += matrix[k][i] * matrix[k][j];
                }
                result[i][j] = temp / (n - 1);
            }
        }
        return result;
    }

    /**
     * 求特征值矩阵
     * 
     * @param matrix
     *            协方差矩阵
     * @return result 向量的特征值二维数组矩阵
     */
    public double[][] getEigenvalueMatrix(double[][] matrix) {
        Matrix A = new Matrix(matrix);
        // 由特征值组成的对角矩阵,eig()获取特征值
        A.eig().getD().print(10, 6);
        double[][] result = A.eig().getD().getArray();
        return result;
    }

    /**
     * 标准化矩阵(特征向量矩阵)
     * 
     * @param matrix
     *            特征值矩阵
     * @return result 标准化后的二维数组矩阵
     */
    public double[][] getEigenVectorMatrix(double[][] matrix) {
        Matrix A = new Matrix(matrix);
        A.eig().getV().print(6, 2);
        double[][] result = A.eig().getV().getArray();
        return result;
    }

    /**
     * 寻找主成分
     * 
     * @param prinmaryArray
     *            原始二维数组数组
     * @param eigenvalue
     *            特征值二维数组
     * @param eigenVectors
     *            特征向量二维数组
     * @return principalMatrix 主成分矩阵
     */
    public Matrix getPrincipalComponent(double[][] primaryArray,
            double[][] eigenvalue, double[][] eigenVectors) {
        Matrix A = new Matrix(eigenVectors);// 定义一个特征向量矩阵
        double[][] tEigenVectors = A.transpose().getArray();// 特征向量转置
        Map<Integer, double[]> principalMap = new HashMap<Integer, double[]>();// key=主成分特征值,value=该特征值对应的特征向量
        TreeMap<Double, double[]> eigenMap = new TreeMap<Double, double[]>(
                Collections.reverseOrder());// key=特征值,value=对应的特征向量;初始化为翻转排序,使map按key值降序排列
        double total = 0;// 存储特征值总和
        int index = 0, n = eigenvalue.length;
        double[] eigenvalueArray = new double[n];// 把特征值矩阵对角线上的元素放到数组eigenvalueArray里
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (i == j)
                    eigenvalueArray[index] = eigenvalue[i][j];
            }
            index++;
        }

        for (int i = 0; i < tEigenVectors.length; i++) {
            double[] value = new double[tEigenVectors[0].length];
            value = tEigenVectors[i];
            eigenMap.put(eigenvalueArray[i], value);
        }

        // 求特征总和
        for (int i = 0; i < n; i++) {
            total += eigenvalueArray[i];
        }
        // 选出前几个主成分
        double temp = 0;
        int principalComponentNum = 0;// 主成分数
        List<Double> plist = new ArrayList<Double>();// 主成分特征值
        for (double key : eigenMap.keySet()) {
            if (temp / total <= threshold) {
                temp += key;
                plist.add(key);
                principalComponentNum++;
            }
        }
        System.out.println("\n" + "当前阈值: " + threshold);
        System.out.println("取得的主成分数: " + principalComponentNum + "\n");

        // 往主成分map里输入数据
        for (int i = 0; i < plist.size(); i++) {
            if (eigenMap.containsKey(plist.get(i))) {
                principalMap.put(i, eigenMap.get(plist.get(i)));
            }
        }

        // 把map里的值存到二维数组里
        double[][] principalArray = new double[principalMap.size()][];
        Iterator<Entry<Integer, double[]>> it = principalMap.entrySet()
                .iterator();
        for (int i = 0; it.hasNext(); i++) {
            principalArray[i] = it.next().getValue();
        }

        Matrix principalMatrix = new Matrix(principalArray);

        return principalMatrix;
    }

    /**
     * 矩阵相乘
     * 
     * @param primary
     *            原始二维数组
     * 
     * @param matrix
     *            主成分矩阵
     * 
     * @return result 结果矩阵
     */
    public Matrix getResult(double[][] primary, Matrix matrix) {
        Matrix primaryMatrix = new Matrix(primary);
        Matrix result = primaryMatrix.times(matrix.transpose());
        return result;
    }
}
 

//==================MainClass========================

import Jama.Matrix;

public class PCAMain {
    public static void main(String[] args) {
        PCA pca = new PCA();
        double[][] primaryArray = { { 100, 2, 3, 4, 1, 2, 32, 2 }, { 1, 2, 31, 52, 1, 2, 32, 2 },
                { 1, 2, 32, 2, 1, 2, 31, 52 }, { 1, 2, 32, 2, 1, 2, 30, 52 } };
        System.out.println("--------------------------------------------");
        System.out.println("原始数据: ");
        System.out.println(primaryArray.length + "行," + primaryArray[0].length + "列");
        for (int i = 0; i < primaryArray.length; i++) {
            for (int j = 0; j < primaryArray[0].length; j++) {
                System.out.print(+primaryArray[i][j] + " \t");
            }
            System.out.println();
        }

        // 均值中心化后的矩阵
        double[][] averageArray = pca.changeAverageToZero(primaryArray);
        System.out.println("--------------------------------------------");
        System.out.println("均值0化后的数据: ");
        System.out.println(averageArray.length + "行," + averageArray[0].length + "列");
        for (int i = 0; i < averageArray.length; i++) {
            for (int j = 0; j < averageArray[0].length; j++) {
                System.out.print((float) averageArray[i][j] + " \t");
            }
            System.out.println();
        }
        // 协方差矩阵
        double[][] varMatrix = pca.getVarianceMatrix(averageArray);
        System.out.println("---------------------------------------------");
        System.out.println("协方差矩阵: ");
        for (int i = 0; i < varMatrix.length; i++) {
            for (int j = 0; j < varMatrix[0].length; j++) {
                System.out.print((float) varMatrix[i][j] + "\t");
            }
            System.out.println();
        }
        // 特征值矩阵
        System.out.println("--------------------------------------------");
        System.out.println("特征值矩阵: ");
        double[][] eigenvalueMatrix = pca.getEigenvalueMatrix(varMatrix);

        // 特征向量矩阵
        System.out.println("--------------------------------------------");
        System.out.println("特征向量矩阵: ");
        double[][] eigenVectorMatrix = pca.getEigenVectorMatrix(varMatrix);

        // 主成分矩阵
        System.out.println("--------------------------------------------");
        Matrix principalMatrix = pca.getPrincipalComponent(primaryArray, eigenvalueMatrix, eigenVectorMatrix);
        System.out.println("主成分矩阵: ");
        principalMatrix.print(6, 2);

        // 降维后的矩阵
        System.out.println("--------------------------------------------");
        System.out.println("降维后的矩阵: ");
        Matrix resultMatrix = pca.getResult(primaryArray, principalMatrix);
        resultMatrix.print(10, 2);

    }
}
 

 

直接可运行

© 著作权归作者所有

共有 人打赏支持
上一篇: 特征工程
Harry_sir
粉丝 15
博文 80
码字总数 48004
作品 0
朝阳
其他
私信 提问
论文[基于WiFi信号的人体行为感知技术研究综述]阅读-知识补充

非视距 非视距最直接的解释是,通信的两点视线受阻,彼此看不到对方,菲涅尔区大于50%的范围被阻挡 。 在有障碍物的情况下,无线信号只能通过反射,散射和衍射方式到达接收端,我们称之为非视...

散人lins
04/13
0
0
大数据工程师需要精通算法吗,要达到一个什么程度呢?

机器学习是人工智能的一个重要分支,而机器学习下最重要的就是算法,本文讲述归纳了入门级的几个机器学习算法,加大数据学习群:716581014一起加入AI技术大本营。 1、监督学习算法 这个算法由...

董黎明
06/23
0
0
openJdk和sun jdk的区别

使用过LINUX的人都应该知道,在大多数LINUX发行版本里,内置或者通过软件源安装JDK的话,都是安装的OpenJDK, 那么到底什么是OpenJDK,它与SUN JDK有什么关系和区别呢? 历史上的原因是,Ope...

jason_kiss
06/18
0
0
ThreadLocal源码分析

阅读原文请访问我的博客 BrightLoong's Blog 一. 简介 提醒篇幅较大需耐心。 简介来自ThreadLocal类注释 ThreadLocal类提供了线程局部 (thread-local) 变量。这些变量与普通变量不同,每个线...

BrightLoong
05/28
0
0
大数据教程(7.6)shell脚本定时采集日志数据到hdfs

上一篇博客博主分享了hadoop内置rpc的使用案例,本节博主将为小伙伴们分享一个在实际生产中使用的日志搜集案例。前面的文章我们有讲到过用户点击流日志分析的流程,本节就是要完成这个分析流...

em_aaron
11/17
0
0

没有更多内容

加载失败,请刷新页面

加载更多

自定义 Maven 的 repositories

有时,应用中需要一些比较新的依赖,而这些依赖并没有正式发布,还是处于milestone或者是snapshot阶段,并不能从中央仓库或者镜像站上下载到。此时,就需要 自定义Maven的<repositories>。 ...

waylau
37分钟前
1
0
徒手写一个es6代码库

mkdir democd demonpm initnpm install -g babelnpm install -g babel-clinpm install --save-dev babel-preset-es2015-node5 在项目目录创建两个文件夹 functional-playground ......

lilugirl
37分钟前
2
0
linux定位应用问题的一些常用命令,特别针对内存和线程分析的dump命令

1.jps找出进程号,找到对应的进程号后面才好继续操作 2.linux查看进程详细信息 ps -ef | grep 进程ID 3. dump内存信息 Jmap -dump:format=b,file=YYMMddhhmm.dump pid 4.top查看cpu占用信息 ...

noob_chr
38分钟前
1
0
Android TV开发-按键焦点

写在前面 按键焦点过程了解 2.1 dispatchKeyEvent 过程了解 2.2 焦点查找请求过程了解 1.2.1 第一次获取焦点 1.2.3 按键焦点 焦点控制 焦点记忆 应用场景 参考资料 [TOC] 1. 写在前面 工...

冰雪情缘l
38分钟前
1
0
java框架学习日志-3

这章主要是补充一些ioc创建对象的方式,ioc容器在写好<bean></bean>的时候就已经创建对象了。在之前的例子中,一直都是无参的构造方法。下面给出有参的构造方法的对象的创建,没有什么难点重...

白话
40分钟前
2
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部