文档章节

主成分分析(PCA) Java

Harry_sir
 Harry_sir
发布于 2017/08/28 16:25
字数 1160
阅读 82
收藏 0

导入jar包:Jama-1.0.2.jar

//========计算类===========

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.TreeMap;

import Jama.Matrix;

/*
 * 算法步骤:
 * 1)将原始数据按列组成n行m列矩阵X
 * 2)特征中心化。即每一维的数据都减去该维的均值,使每一维的均值都为0
 * 3)求出协方差矩阵
 * 4)求出协方差矩阵的特征值及对应的特征向量
 * 5)将特征向量按对应的特征值大小从上往下按行排列成矩阵,取前k行组成矩阵p
 * 6)Y=PX 即为降维到k维后的数据
 */
public class PCA {

    private static final double threshold = 0.95;// 特征值阈值

    /**
     * 
     * 使每个样本的均值为0
     * 
     * @param primary
     *            原始二维数组矩阵
     * @return averageArray 中心化后的矩阵
     */
    public double[][] changeAverageToZero(double[][] primary) {
        int n = primary.length;
        int m = primary[0].length;
        double[] sum = new double[m];
        double[] average = new double[m];
        double[][] averageArray = new double[n][m];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                sum[i] += primary[j][i];
            }
            average[i] = sum[i] / n;
        }
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                averageArray[j][i] = primary[j][i] - average[i];
            }
        }
        return averageArray;
    }

    /**
     * 
     * 计算协方差矩阵
     * 
     * @param matrix
     *            中心化后的矩阵
     * @return result 协方差矩阵
     */
    public double[][] getVarianceMatrix(double[][] matrix) {
        int n = matrix.length;// 行数
        int m = matrix[0].length;// 列数
        double[][] result = new double[m][m];// 协方差矩阵
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < m; j++) {
                double temp = 0;
                for (int k = 0; k < n; k++) {
                    temp += matrix[k][i] * matrix[k][j];
                }
                result[i][j] = temp / (n - 1);
            }
        }
        return result;
    }

    /**
     * 求特征值矩阵
     * 
     * @param matrix
     *            协方差矩阵
     * @return result 向量的特征值二维数组矩阵
     */
    public double[][] getEigenvalueMatrix(double[][] matrix) {
        Matrix A = new Matrix(matrix);
        // 由特征值组成的对角矩阵,eig()获取特征值
        A.eig().getD().print(10, 6);
        double[][] result = A.eig().getD().getArray();
        return result;
    }

    /**
     * 标准化矩阵(特征向量矩阵)
     * 
     * @param matrix
     *            特征值矩阵
     * @return result 标准化后的二维数组矩阵
     */
    public double[][] getEigenVectorMatrix(double[][] matrix) {
        Matrix A = new Matrix(matrix);
        A.eig().getV().print(6, 2);
        double[][] result = A.eig().getV().getArray();
        return result;
    }

    /**
     * 寻找主成分
     * 
     * @param prinmaryArray
     *            原始二维数组数组
     * @param eigenvalue
     *            特征值二维数组
     * @param eigenVectors
     *            特征向量二维数组
     * @return principalMatrix 主成分矩阵
     */
    public Matrix getPrincipalComponent(double[][] primaryArray,
            double[][] eigenvalue, double[][] eigenVectors) {
        Matrix A = new Matrix(eigenVectors);// 定义一个特征向量矩阵
        double[][] tEigenVectors = A.transpose().getArray();// 特征向量转置
        Map<Integer, double[]> principalMap = new HashMap<Integer, double[]>();// key=主成分特征值,value=该特征值对应的特征向量
        TreeMap<Double, double[]> eigenMap = new TreeMap<Double, double[]>(
                Collections.reverseOrder());// key=特征值,value=对应的特征向量;初始化为翻转排序,使map按key值降序排列
        double total = 0;// 存储特征值总和
        int index = 0, n = eigenvalue.length;
        double[] eigenvalueArray = new double[n];// 把特征值矩阵对角线上的元素放到数组eigenvalueArray里
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (i == j)
                    eigenvalueArray[index] = eigenvalue[i][j];
            }
            index++;
        }

        for (int i = 0; i < tEigenVectors.length; i++) {
            double[] value = new double[tEigenVectors[0].length];
            value = tEigenVectors[i];
            eigenMap.put(eigenvalueArray[i], value);
        }

        // 求特征总和
        for (int i = 0; i < n; i++) {
            total += eigenvalueArray[i];
        }
        // 选出前几个主成分
        double temp = 0;
        int principalComponentNum = 0;// 主成分数
        List<Double> plist = new ArrayList<Double>();// 主成分特征值
        for (double key : eigenMap.keySet()) {
            if (temp / total <= threshold) {
                temp += key;
                plist.add(key);
                principalComponentNum++;
            }
        }
        System.out.println("\n" + "当前阈值: " + threshold);
        System.out.println("取得的主成分数: " + principalComponentNum + "\n");

        // 往主成分map里输入数据
        for (int i = 0; i < plist.size(); i++) {
            if (eigenMap.containsKey(plist.get(i))) {
                principalMap.put(i, eigenMap.get(plist.get(i)));
            }
        }

        // 把map里的值存到二维数组里
        double[][] principalArray = new double[principalMap.size()][];
        Iterator<Entry<Integer, double[]>> it = principalMap.entrySet()
                .iterator();
        for (int i = 0; it.hasNext(); i++) {
            principalArray[i] = it.next().getValue();
        }

        Matrix principalMatrix = new Matrix(principalArray);

        return principalMatrix;
    }

    /**
     * 矩阵相乘
     * 
     * @param primary
     *            原始二维数组
     * 
     * @param matrix
     *            主成分矩阵
     * 
     * @return result 结果矩阵
     */
    public Matrix getResult(double[][] primary, Matrix matrix) {
        Matrix primaryMatrix = new Matrix(primary);
        Matrix result = primaryMatrix.times(matrix.transpose());
        return result;
    }
}
 

//==================MainClass========================

import Jama.Matrix;

public class PCAMain {
    public static void main(String[] args) {
        PCA pca = new PCA();
        double[][] primaryArray = { { 100, 2, 3, 4, 1, 2, 32, 2 }, { 1, 2, 31, 52, 1, 2, 32, 2 },
                { 1, 2, 32, 2, 1, 2, 31, 52 }, { 1, 2, 32, 2, 1, 2, 30, 52 } };
        System.out.println("--------------------------------------------");
        System.out.println("原始数据: ");
        System.out.println(primaryArray.length + "行," + primaryArray[0].length + "列");
        for (int i = 0; i < primaryArray.length; i++) {
            for (int j = 0; j < primaryArray[0].length; j++) {
                System.out.print(+primaryArray[i][j] + " \t");
            }
            System.out.println();
        }

        // 均值中心化后的矩阵
        double[][] averageArray = pca.changeAverageToZero(primaryArray);
        System.out.println("--------------------------------------------");
        System.out.println("均值0化后的数据: ");
        System.out.println(averageArray.length + "行," + averageArray[0].length + "列");
        for (int i = 0; i < averageArray.length; i++) {
            for (int j = 0; j < averageArray[0].length; j++) {
                System.out.print((float) averageArray[i][j] + " \t");
            }
            System.out.println();
        }
        // 协方差矩阵
        double[][] varMatrix = pca.getVarianceMatrix(averageArray);
        System.out.println("---------------------------------------------");
        System.out.println("协方差矩阵: ");
        for (int i = 0; i < varMatrix.length; i++) {
            for (int j = 0; j < varMatrix[0].length; j++) {
                System.out.print((float) varMatrix[i][j] + "\t");
            }
            System.out.println();
        }
        // 特征值矩阵
        System.out.println("--------------------------------------------");
        System.out.println("特征值矩阵: ");
        double[][] eigenvalueMatrix = pca.getEigenvalueMatrix(varMatrix);

        // 特征向量矩阵
        System.out.println("--------------------------------------------");
        System.out.println("特征向量矩阵: ");
        double[][] eigenVectorMatrix = pca.getEigenVectorMatrix(varMatrix);

        // 主成分矩阵
        System.out.println("--------------------------------------------");
        Matrix principalMatrix = pca.getPrincipalComponent(primaryArray, eigenvalueMatrix, eigenVectorMatrix);
        System.out.println("主成分矩阵: ");
        principalMatrix.print(6, 2);

        // 降维后的矩阵
        System.out.println("--------------------------------------------");
        System.out.println("降维后的矩阵: ");
        Matrix resultMatrix = pca.getResult(primaryArray, principalMatrix);
        resultMatrix.print(10, 2);

    }
}
 

 

直接可运行

© 著作权归作者所有

共有 人打赏支持
Harry_sir
粉丝 14
博文 80
码字总数 48004
作品 0
朝阳
其他
论文[基于WiFi信号的人体行为感知技术研究综述]阅读-知识补充

非视距 非视距最直接的解释是,通信的两点视线受阻,彼此看不到对方,菲涅尔区大于50%的范围被阻挡 。 在有障碍物的情况下,无线信号只能通过反射,散射和衍射方式到达接收端,我们称之为非视...

散人lins
04/13
0
0
大数据工程师需要精通算法吗,要达到一个什么程度呢?

机器学习是人工智能的一个重要分支,而机器学习下最重要的就是算法,本文讲述归纳了入门级的几个机器学习算法,加大数据学习群:716581014一起加入AI技术大本营。 1、监督学习算法 这个算法由...

董黎明
06/23
0
0
数据库中间件 Sharding-JDBC 源码分析 —— JDBC实现与读写分离

摘要: 原创出处 http://www.iocoder.cn/Sharding-JDBC/jdbc-implement-and-read-write-splitting/ 「芋道源码」欢迎转载,保留摘要,谢谢! 本文主要基于 Sharding-JDBC 1.5.0 正式版 1. 概述...

芋道源码
2017/10/22
0
0
openJdk和sun jdk的区别

使用过LINUX的人都应该知道,在大多数LINUX发行版本里,内置或者通过软件源安装JDK的话,都是安装的OpenJDK, 那么到底什么是OpenJDK,它与SUN JDK有什么关系和区别呢? 历史上的原因是,Ope...

jason_kiss
06/18
0
0
Java GC系列:Java垃圾回收详解

Java的内存分配与回收全部由JVM垃圾回收进程自动完成。与C语言不同,Java开发者不需要自己编写代码实现垃圾回收。这是Java深受大家欢迎的众多特性之一,能够帮助程序员更好地编写Java程序。 ...

满风
2015/04/10
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

Go语言_通神之路(2)

1、包 每个Go程序都是由包构成,从main包开始运行,就是我上一篇讲到的,都是从main函数开始执行,但是必须在main包下面! package mainimport ( "fmt" "math/rand")func ...

木九天
昨天
4
0
51.php-fpm的pool 慢日志 open_basedir 进程管理

12.21 php-fpm的pool 12.22 php-fpm慢执行日志(测试时报错) 12.23 open_basedir 12.24 php-fpm进程管理 12.21 php-fpm的pool: php-fpm里的pool也叫池子,咱们之前加入过www的配置,这个w...

王鑫linux
昨天
0
0
java内存模型概述

1、Java虚拟机运行时数据分区图 程序计数器:线程私有,是一块较小的内存空间,它是当前线程所执行的字节码文件的行号指示器 java虚拟机栈:线程私有,其生命周期与线程相同,这也就是我们平...

京一
昨天
1
0
shell学习之test语法

因为if-then语句不能测试退出状态码之外的条件,所以提供了test, 如果test命令中列出的条件成立,test命令就会退出并返回退出状态码0;如果条件不成立,test命令就会退出并返回非零的退出状态...

woshixin
昨天
0
0
openJDK之如何下载各个版本的openJDK源码

如果我们需要阅读openJDK的源码,那么需要下载,那么该去哪下载呢? 现在JDK已经发展到版本10了,11已经处于计划中,如果需要特定版本的openJDK,它们的下载链接在哪呢? 1.openJDK的项目 链接...

汉斯-冯-拉特
昨天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部