Spark 3.0 内置支持 GPU 调度

2020/09/22 11:07
阅读数 1.2K

如今大数据和机器学习已经有了很大的结合,在机器学习里面,因为计算迭代的时间可能会很长,开发人员一般会选择使用 GPU、FPGA 或 TPU 来加速计算。在 Apache Hadoop 3.1 版本里面已经开始内置原生支持 GPU 和 FPGA 了。

作为通用计算引擎的 Spark 肯定也不甘落后,来自 Databricks、NVIDIA、Google 以及阿里巴巴的工程师们正在为 Apache Spark 添加原生的 GPU 调度支持,该方案填补了 Spark 在 GPU 资源的任务调度方面的空白,有机地融合了大数据处理和 AI 应用,扩展了 Spark 在深度学习、信号处理和各大数据应用的应用场景。

目前 Apache Spark 支持的资源管理器 YARN 和 Kubernetes 已经支持了 GPU。为了让 Spark 也支持 GPUs,在技术层面上需要做出两个主要改变:

  • 在 cluster manager 层面上,需要升级 cluster managers 来支持 GPU。并且给用户提供相关 API,使得用户可以控制 GPU 资源的使用和分配。
  • 在 Spark 内部,需要在 scheduler 层面做出修改,使得 scheduler 可以在用户 task 请求中识别 GPU 的需求,然后根据 executor 上的 GPU 供给来完成资源分配。

更多参考:

因为让 Apache Spark 支持 GPU 是一个比较大的特性,所以项目分为了几个阶段。在 Apache Spark 3.0 版本,将支持在 standalone、 YARN 以及 Kubernetes 资源管理器下支持 GPU,并且对现有正常的作业基本没影响。对于 TPU 的支持、Mesos 资源管理器中 GPU 的支持、以及 Windows 平台的 GPU 支持将不是这个版本的目标。而且对于一张 GPU 卡内的细粒度调度也不会在这个版本支持;Apache Spark 3.0 版本将把一张 GPU 卡和其内存作为不可分割的单元。

1、Spark Scheduling

在这个层面,我们得允许从 RDD/PandasUDF API 中指定资源请求,这些请求应该在 DAGScheduler 中汇总。TaskSetManager 管理每个 Stage 挂起(pending)的任务,对于那些有 GPU 请求的任务,我们需要处理;对于那些不需要 GPU 的作业,其调度行为和效率应该和之前保持一致。

目前,CPUS_PER_TASK(spark.task.cpus)是一个 int 类型的全局配置,用于指定每个 task 应分配的 cores。为了支持 GPU 的配置,引入了 spark.task.gpus 参数用于指定每个 task 需要申请的 GPU 数。如果用户没有指定 spark.task.cpus 或 spark.task.gpus,那么 Spark 程序将使用默认的值;因为需要向后兼容,所以如果用户没指定 spark.task.cpus 或 spark.task.gpus,这两个参数的默认值分别为 1 和 空。

对于 ExecutorBackend ,需要使得它可以识别和管理 GPU ,并且把这些信息同步(比如修改现有的 RegisterExecutor 类)到 SchedulerBackend,然后 SchedulerBackend 可以根据这些 GPU 信息,为那些需要 GPU 资源的 task 进行资源分配。

2、Resource Manager

第一阶段将在 Standalone、YARN 以及 Kubernetes 上支持 GPU。Spark 需要在这三种资源管理上面做一些工作。

Standalone

Standalone 是 Spark 内置的资源管理模式,但是目前的 Standalone 部署模式并不能支持 GPU 等资源。为了能识别 GPU 信息,一种可行的方法是在配置文件里面对 GPU 资源进行配置, Worker 通过读取这些配置信息,并在内存结构里面维护 GPU 和 CPU 等可用资源等信息。同时,在 Master 上通过 allocateWorkerResourceToExecutors 方法对 Executors 申请的资源(包括 GPU)进行分配。

YARN

为了能够在 YARN 上支持 GPU,我们需要使用 YARN 3.1.2+ 版本;同时我们需要在 YARN 集群上做出相关配置,使得 YARN 启动了对 GPU 资源的支持,关于如何在 YARN 上配置 GPU 资源,请参见这里

当为 Executors 申请 YARN 容器时,Spark 需要在 YARN 容器请求中将 executor 所需的 GPU 数量映射到 yarn.io/gpu 资源中。YARN 具有 GPU 隔离机制,所以无论是否使用 Docker 容器, 对未分配给 YARN 容器的 GPU 资源的使用将会被阻止。

需要注意的是,截至目前 YARN 仅支持 Nvidia GPU。

Kubernetes

从 Kubernetes 1.8 版本开始,Kubernetes 使用设备插件模型(device plugin model)来支持 GPU、高性能NIC,FPGA 等设备。目前 Kubernetes 支持 Nvidia 、AMD 和 Intel 的 GPU 设备。在 Spark + k8s 里面为 task 指定 GPU 的数量和在 Standalone 或 YARN 模式里面一样。也是支持 spark.task.gpus 和 spark.executor.gpus 的全局配置,也支持在 RDD stage 中为每个 task 设置。

3、更多参考

 
展开阅读全文
加载中

作者的其它热门文章

打赏
0
0 收藏
分享
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部