201_PyTorch中文教程:Torch与Numpy互操作
Numpy是经典的数学计算库,Torch中的Tensor可以与之互相转换,从而可以充分利用二者的计算函数和模型,以及使用其它支持Numpy的软件库和工具。但需注意,转换需要花费额外的内存和CPU等计算资源。
依赖软件包:
- torch
- numpy
Torch的更多数学操作,参考: http://pytorch.org/docs/torch.html#math-operations
import torch
import numpy as np
# 转换 numpy 为 tensor,或者转回来。
np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data)
tensor2array = torch_data.numpy()
print(
'\nnumpy array:', np_data, # [[0 1 2], [3 4 5]]
'\ntorch tensor:', torch_data, # 0 1 2 \n 3 4 5 [torch.LongTensor of size 2x3]
'\ntensor to array:', tensor2array, # [[0 1 2], [3 4 5]]
)
numpy array: [[0 1 2]
[3 4 5]]
torch tensor: tensor([[0, 1, 2],
[3, 4, 5]])
tensor to array: [[0 1 2]
[3 4 5]]
# 求绝对值
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data) # 32-bit floating point
print(
'\nabs',
'\nnumpy: ', np.abs(data), # [1 2 1 2]
'\ntorch: ', torch.abs(tensor) # [1 2 1 2]
)
abs
numpy: [1 2 1 2]
torch: tensor([1., 2., 1., 2.])
tensor.abs()
tensor([1., 2., 1., 2.])
# 求sin值
print(
'\nsin',
'\nnumpy: ', np.sin(data), # [-0.84147098 -0.90929743 0.84147098 0.90929743]
'\ntorch: ', torch.sin(tensor) # [-0.8415 -0.9093 0.8415 0.9093]
)
sin
numpy: [-0.84147098 -0.90929743 0.84147098 0.90929743]
torch: tensor([-0.8415, -0.9093, 0.8415, 0.9093])
tensor.sigmoid()
tensor([0.2689, 0.1192, 0.7311, 0.8808])
tensor.exp()
tensor([0.3679, 0.1353, 2.7183, 7.3891])
# mean
print(
'\nmean',
'\nnumpy: ', np.mean(data), # 0.0
'\ntorch: ', torch.mean(tensor) # 0.0
)
mean
numpy: 0.0
torch: tensor(0.)
# 矩阵乘法,matrix multiplication
data = [[1,2], [3,4]]
tensor = torch.FloatTensor(data) # 32-bit floating point
# correct method
print(
'\nmatrix multiplication (matmul)',
'\nnumpy: ', np.matmul(data, data), # [[7, 10], [15, 22]]
'\ntorch: ', torch.mm(tensor, tensor) # [[7, 10], [15, 22]]
)
matrix multiplication (matmul)
numpy: [[ 7 10]
[15 22]]
torch: tensor([[ 7., 10.],
[15., 22.]])
# 不正确的方法
data = np.array(data)
tensor = torch.Tensor(data)
# 参考:https://www.cnblogs.com/yangzhaonan/p/10439416.html
print(
'\nmatrix multiplication (dot)',
'\nnumpy: ', data.dot(data), # [[7, 10], [15, 22]]
'\ntorch: ', torch.dot(tensor.dot(tensor)) # NOT WORKING! Beware that torch.dot does not broadcast, only works for 1-dimensional tensor
)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-de97c709d870> in <module>()
7 '\nmatrix multiplication (dot)',
8 '\nnumpy: ', data.dot(data), # [[7, 10], [15, 22]]
----> 9 '\ntorch: ', torch.dot(tensor.dot(tensor)) # NOT WORKING! Beware that torch.dot does not broadcast, only works for 1-dimensional tensor
10 )
TypeError: dot() missing 1 required positional arguments: "tensor"
Note that:
torch.dot(tensor1, tensor2) → float
Computes the dot product (inner product) of two tensors. Both tensors are treated as 1-D vectors.
tensor.mm(tensor)
tensor([[ 7., 10.],
[15., 22.]])
tensor * tensor
tensor([[ 1., 4.],
[ 9., 16.]])
torch.dot(torch.Tensor([2, 3]), torch.Tensor([2, 1]))
tensor(7.)