文档章节

SQLAlchemy技术文档(中文版)(上)

92自由
 92自由
发布于 2015/01/20 09:37
字数 1853
阅读 51
收藏 2

在学习SQLAlchemy的过程中,好多时候需要查官方Tutorial,发现网上并没有完整的中文版,于是利用这两天空余时间粗略翻译了一下。

翻译效果很差。。。。但也算是强迫自己通读一遍Tutorial,收获很多。

 

1.版本检查

import sqlalchemy
sqlalchemy.__version__ 

2.连接

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:',echo=True)

echo参数为True时,会显示每条执行的SQL语句,可以关闭。create_engine()返回一个Engine的实例,并且它表示通过数据库语法处理细节的核心接口,在这种情况下,数据库语法将会被解释称Python的类方法。

3.声明映像

当使用ORM1】时,构造进程首先描述数据库的表,然后定义我们用来映射那些表的类。在现版本的SQLAlchemy中,这两个任务通常一起执行,通过使用Declarative方法,我们可以创建一些包含描述要被映射的实际数据库表的准则的映射类。

使用Declarative方法定义的映射类依据一个基类,这个基类是维系类和数据表关系的目录——我们所说的Declarative base class。在一个普通的模块入口中,应用通常只需要有一个base的实例。我们通过declarative_base()功能创建一个基类:

from sqlalchemy.ext.declarativeimportdeclarative_base
Base = declarative_base()

有了这个base,我们可以依据这个base定义任意数量的映射类。一个简单的user例子:

from sqlalchemy import Column, Integer, String
class User(Base):
__tablename__= 'users'
id= Column(Integer, primary_key=True)
name = Column(String)

Declarative构造的一个类至少需要一个__tablename__属性,一个主键行。

4.构造模式(项目中没用到)

5.创建映射类的实例

ed_user = User(name='ed',fullname='Ed Jones', password='edspassword')

6.创建会话

现在我们已经准备毫和数据库开始会话了。ORM通过Session与数据库建立连接的。当应用第一次载入时,我们定义一个Session类(声明create_engine()的同时),这个Session类为新的Session对象提供工厂服务。

from sqlalchemy.orm import sessionmaker
Session = sessionmaker(bind=engine)

这个定制的Session类会创建绑定到数据库的Session对象。如果需要和数据库建立连接,只需要实例化一个Session

session = Session()

虽然上面的Session已经和数据库引擎Engine关联,但是还没有打开任何连接。当它第一次被使用时,就会从Engine维护的一个连接池中检索是否存在连接,如果存在便会保持连接知道我们提交所有更改并且/或者关闭session对象。

7.添加新对象(简略)

ed_user = User(name='ed', fullname='Ed Jones', password='edspassword')
session.add(ed_user)

至此,我们可以认为,新添加的这个对象实例仍在等待中;ed_user对象现在并不代表数据库中的一行数据。直到使用flush进程,Session才会让SQL保持连接。如果查询这条数据的话,所有等待信息会被第一时间刷新,查询结果也会立即发行。

session.commit()

通过commit()可以提交所有剩余的更改到数据库。

8.回滚

session.rollback()

9.查询

通过Sessionquery()方法创建一个查询对象。这个函数的参数数量是可变的,参数可以是任何类或者是类的描述的集合。下面是一个迭代输出User类的例子:

for instance in session.query(User).order_by(User.id): 
print instance.name,instance.fullname

Query也支持ORM描述作为参数。任何时候,多个类的实体或者是基于列的实体表达都可以作为query()函数的参数,返回类型是元组:

for name, fullname in session.query(User.name,User.fullname): 

print name, fullname

Query返回的元组被命名为KeyedTuple类的实例元组。并且可以把它当成一个普通的Python数据类操作。元组的名字就相当于属性的属性名,类的类名一样。


for row in session.query(User, User.name).all():

print
row.User,row.name
<User(name='ed',fullname='Ed Jones', password='f8s7ccs')>ed

label()不知道怎么解释,看下例子就明白了。相当于row.name

for row in session.query(User.name.label('name_label')).all():

print(row.name_label)

aliased()我的理解是类的别名,如果有多个实体都要查询一个类,可以用aliased()

from sqlalchemy.orm import aliased
user_alias = aliased(User, name='user_alias')
for row in session.query(user_alias,user_alias.name).all():

print
row.user_alias

Query的 基本操作包括LIMITOFFSET,使用Python数组切片和ORDERBY结合可以让操作变得很方便。

for u in session.query(User).order_by(User.id)[1:3]:

#只查询第二条和第三条数据

9.1使用关键字变量过滤查询结果,filter filter_by都适用。【2】使用很简单,下面列出几个常用的操作

query.filter(User.name == 'ed') #equals
query.filter(User.name != 'ed') #not equals
query.filter(User.name.like('%ed%')) #LIKE
uery.filter(User.name.in_(['ed','wendy', 'jack'])) #IN
query.filter(User.name.in_(session.query(User.name).filter(User.name.like('%ed%'))#IN
query.filter(~User.name.in_(['ed','wendy', 'jack']))#not IN
query.filter(User.name == None)#is None
query.filter(User.name != None)#not None
from sqlalchemy import and_
query.filter(and_(User.name =='ed',User.fullname =='Ed Jones')) # and
query.filter(User.name == 'ed',User.fullname =='Ed Jones') # and
query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')# and
from sqlalchemy import or_
query.filter(or_(User.name =='ed', User.name =='wendy')) #or
query.filter(User.name.match('wendy')) #match

9.2.返回列表和数量(标量?)

all()返回一个列表:可以进行Python列表的操作。

query = session.query(User).filter(User.name.like('%ed')).order_by(User.id)
query.all() 
[<User(name='ed',fullname='EdJones', password='f8s7ccs')>,<User(name='fred', fullname='FredFlinstone', password='blah')>]

first()适用于限制一个情况,返回查询到的第一个结果作为标量?:好像只能作为属性,类

query.first()

<User(name='ed',
fullname='Ed Jones', password='f8s7ccs')>

one()完全获取所有行,并且如果查询到的不只有一个对象或是有复合行,就会抛出异常。

from sqlalchemy.orm.exc import MultipleResultsFound
user = query.one()
try:

  user
= query.one()
except   MultipleResultsFound, e:
  print e
Multiple rows were found for one()

如果一行也没有:

from sqlalchemy.orm.exc import NoResultFound
try:

  user
= query.filter(User.id == 99).one()
except NoResultFound, e:
  print e
No row was found for one()

one()方法对于想要解决“no items found”multiple items found”是不同的系统是极好的。(这句有语病啊)例如web服务返回,本来是在no results found情况下返回”404“的,结果在多个results found情况下也会跑出一个应用异常。

scalar()作为one()方法的依据,并且在one()成功基础上返回行的第一列。

query = session.query(User.id).filter(User.name == 'ed')
query.scalar()

7

9.3.使用字符串SQL

字符串能使Query更加灵活,通过text()构造指定字符串的使用,这种方法可以用在很多方法中,像filter()order_by()

from sqlalchemy import text
for user in session.query(User).filter(text("id<224")).order_by(text("id")).all()

绑定参数可以指定字符串,用params()方法指定数值。

session.query(User).filter(text("id<:value and name=:name")).\

params(value=224, name='fred').order_by(User.id).one()
 

如果要用一个完整的SQL语句,可以使用from_statement()

ession.query(User).from_statement(text("SELECT* FROM users where name=:name")).\
 params(name='ed').all()

也可以用from_statement()获取完整的”raw”,用字符名确定希望被查询的特定列:

session.query("id","name", "thenumber12").\

from_statement(text("SELECT id, name, 12 as ""thenumber12 FROM users where name=:name")).\

 params(name='ed').all()

[(1,u'ed', 12)]
感觉这个不太符合ORM的思想啊。。。

9.4 计数

count()用来统计查询结果的数量。

session.query(User).filter(User.name.like('%ed')).count() 

func.count()方法比count()更高级一点【3

from sqlalchemy import func

session.query(func.count(User.name),User.name).group_by(User.name).all() 
[(1,u'ed'), (1,u'fred'), (1,u'mary'), (1,u'wendy')]

为了实现简单计数SELECT count(*) FROM table,可以这么写:

session.query(func.count('*')).select_from(User).scalar() 

如果我们明确表达计数是根据User表的主键的话,可以省略select_from(User):

session.query(func.count(User.id)).scalar() 

上面两行结果均为4

go to (下)


© 著作权归作者所有

92自由
粉丝 1
博文 55
码字总数 25852
作品 0
威海
程序员
私信 提问
Flask中可以利用Flask-SQLAlchemy

官方文档:http://flask-sqlalchemy.pocoo.org/2.3/ 1.安装(进入虚拟环境)--利用镜像安装PyMySQL #python36 -m pip install PyMySQL -i http://pypi.mirrors.ustc.edu.cn/simple --trusted-......

编译中ing
2018/10/04
116
0
转-SQLAlchemy and You

written on Tuesday, July 19, 2011 from:http://lucumr.pocoo.org/2011/7/19/sqlachemy-and-you/ Without doubt are most new Python web programmers these days chosing the Django frame......

玉龙
2011/07/26
913
0
在flask-sqlalchemy中使用分页

其实在使用中sqlalchemy和flask-sqlalchemy还是有点区别的的,sqlalchemy中使用query查询,而flask-sqlalchemy中使用basequery查询,他们是子类与父类的关系,flask-sqlalchemy中分页写的很明...

ranvane
2014/01/30
6.7K
0
IronPython通过pypyodbc使用SQLAlchemy的方法

SQLAlchemy是目前在Python界大热的技术,但由于IronPython数据库接口库的缺乏,IronPython却一直无法使用此神器。 现在,借助于纯Python的ODBC接口库pypyodbc,通过简单扩展SQLAlchemy,Iro...

派派技术小组
2013/03/07
425
0
[flask-SQLAlchemy]关于flask-SQLAlchemy的初级使用教程

鉴于网上关于flask-SQLAlchemy的实例使用教程参差不齐,于此写下工作学习过程中的使用过程,以便分享交流。 对于python关于flask有一定了解的高端玩家来说,请转至flask官方开发文档。 一.安...

yzy121403725
2018/05/24
0
0

没有更多内容

加载失败,请刷新页面

加载更多

JMM内存模型(一)&volatile关键字的可见性

在说这个之前,我想先说一下计算机的内存模型: CPU在执行的时候,肯定要有数据,而数据在内存中放着呢,这里的内存就是计算机的物理内存,刚开始还好,但是随着技术的发展,CPU处理的速度越...

走向人生巅峰的大路
26分钟前
67
0
你对AJAX认知有多少(2)?

接着昨日内容,我们几天继续探讨ajax的相关知识点 提到ajax下面几个问题又是必须要了解的啦~~~ 8、在浏览器端如何得到服务器端响应的XML数据。 通过XMLHttpRequest对象的responseXMl属性 9、 ...

理性思考
35分钟前
4
0
正则表达式基础(一)

1.转义 转义的作用: 当某个字符在表达式中具有特殊含义,例如字符串引号中出现了引号,为了可以使用这些字符本身,而不是使用其在表达式中的特殊含义,则需要通过转义符“\”来构建该字符转...

清自以敬
38分钟前
4
0
idea中@Data标签getset不起作用

背景:换电脑以后在idea中有@data注解都不生效 解决办法:idea装个插件 https://blog.csdn.net/seapeak007/article/details/72911529...

栾小糖
44分钟前
5
0
Apache Kudu 不能删除不存在的数据

使用Apache Kudu客户端,对KafkaConnect Sink 进行扩展。 使用的Apache Kudu 的Java 客户端。突然有天发现作业无法提交,一直报错。 后来才发现这是Kudu自身的一种校验机制。为了忽略这种校验...

吐槽的达达仔
54分钟前
6
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部