文档章节

OpenCV实现仿射变换

wangxuwei
 wangxuwei
发布于 2016/07/12 07:00
字数 1012
阅读 162
收藏 2

什么是仿射变换?

  1. 一个任意的仿射变换都能表示为 乘以一个矩阵 (线性变换) 接着再 加上一个向量 (平移).

  2. 综上所述, 我们能够用仿射变换来表示:

    1. 旋转 (线性变换)
    2. 平移 (向量加)
    3. 缩放操作 (线性变换)

    你现在可以知道, 事实上, 仿射变换代表的是两幅图之间的 关系 .

 

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <stdio.h>

using namespace cv;
using namespace std;

/// 全局变量
char* source_window = "Source image";
char* warp_window = "Warp";
char* warp_rotate_window = "Warp + Rotate";

/** @function main */
 int main( int argc, char** argv )
 {
   Point2f srcTri[3];
   Point2f dstTri[3];

   Mat rot_mat( 2, 3, CV_32FC1 );
   Mat warp_mat( 2, 3, CV_32FC1 );
   Mat src, warp_dst, warp_rotate_dst;


   /// 加载源图像
   /// src = imread( argv[1], 1 );
	src = imread("./001.jpg", 1 );

   /// 设置目标图像的大小和类型与源图像一致
   warp_dst = Mat::zeros( src.rows, src.cols, src.type() );

   /// 设置源图像和目标图像上的三组点以计算仿射变换
   srcTri[0] = Point2f( 0,0 );
   srcTri[1] = Point2f( src.cols - 1, 0 );
   srcTri[2] = Point2f( 0, src.rows - 1 );

   dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 );
   dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 );
   dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 );

   /// 求得仿射变换
   warp_mat = getAffineTransform( srcTri, dstTri );

   /// 对源图像应用上面求得的仿射变换
   warpAffine( src, warp_dst, warp_mat, warp_dst.size() );

   /** 对图像扭曲后再旋转 */

   /// 计算绕图像中点顺时针旋转50度缩放因子为0.6的旋转矩阵
   Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
   double angle = -50.0;
   double scale = 0.6;

   /// 通过上面的旋转细节信息求得旋转矩阵
   rot_mat = getRotationMatrix2D( center, angle, scale );

   /// 旋转已扭曲图像
   warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );

   /// 显示结果
   namedWindow( source_window, CV_WINDOW_AUTOSIZE );
   imshow( source_window, src );

   namedWindow( warp_window, CV_WINDOW_AUTOSIZE );
   imshow( warp_window, warp_dst );

   namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE );
   imshow( warp_rotate_window, warp_rotate_dst );

   /// 等待用户按任意按键退出程序
   waitKey(0);

   return 0;
  }

说明

  1. 定义一些需要用到的变量, 比如需要用来储存中间和目标图像的Mat和两个需要用来定义仿射变换的二维点数组.

    Point2f srcTri[3];
    Point2f dstTri[3];
    
    Mat rot_mat( 2, 3, CV_32FC1 );
    Mat warp_mat( 2, 3, CV_32FC1 );
    Mat src, warp_dst, warp_rotate_dst;
  2. 加载源图像:

    src = imread( argv[1], 1 );
  3. 以与源图像同样的类型和大小来对目标图像初始化:

    warp_dst = Mat::zeros( src.rows, src.cols, src.type() );
  4. 仿射变换: 正如上文所说, 我们需要源图像和目标图像上分别一一映射的三个点来定义仿射变换:

    srcTri[0] = Point2f( 0,0 );
    srcTri[1] = Point2f( src.cols - 1, 0 );
    srcTri[2] = Point2f( 0, src.rows - 1 );
    
    dstTri[0] = Point2f( src.cols*0.0, src.rows*0.33 );
    dstTri[1] = Point2f( src.cols*0.85, src.rows*0.25 );
    dstTri[2] = Point2f( src.cols*0.15, src.rows*0.7 );

    你可能想把这些点绘出来以获得对变换的更直观感受. 他们的位置大概就是在上面图例中的点的位置 (原理部分). 你会注意到由三点定义的三角形的大小和方向改变了.

  5. 通过这两组点, 我们能够使用OpenCV函数 getAffineTransform 来求出仿射变换:

    warp_mat = getAffineTransform( srcTri, dstTri );

    我们获得了用以描述仿射变换的 2X3 矩阵 (在这里是 warp_mat)

  6. 将刚刚求得的仿射变换应用到源图像

    warpAffine( src, warp_dst, warp_mat, warp_dst.size() );

    函数有以下参数:

    • src: 输入源图像
    • warp_dst: 输出图像
    • warp_mat: 仿射变换矩阵
    • warp_dst.size(): 输出图像的尺寸

    这样我们就获得了变换后的图像! 我们将会把它显示出来. 在此之前, 我们还想要旋转它...

  7. 旋转: 想要旋转一幅图像, 你需要两个参数:

    1. 旋转图像所要围绕的中心
    2. 旋转的角度. 在OpenCV中正角度是逆时针的
    3. 可选择: 缩放因子

    我们通过下面的代码来定义这些参数:

    Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
    double angle = -50.0;
    double scale = 0.6;
  8. 我们利用OpenCV函数 getRotationMatrix2D 来获得旋转矩阵, 这个函数返回一个 2X3  矩阵 (这里是 rot_mat)

    rot_mat = getRotationMatrix2D( center, angle, scale );
  9. 现在把旋转应用到仿射变换的输出.

    warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
  10. 最后我们把仿射变换和旋转的结果绘制在窗体中,源图像也绘制出来以作参照:

    namedWindow( source_window, CV_WINDOW_AUTOSIZE );
    imshow( source_window, src );
    
    namedWindow( warp_window, CV_WINDOW_AUTOSIZE );
    imshow( warp_window, warp_dst );
    
    namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE );
    imshow( warp_rotate_window, warp_rotate_dst );
  11. 等待用户退出程序

    waitKey(0);

本文转载自:www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/warp_affine/warp_affine.html

wangxuwei
粉丝 26
博文 336
码字总数 119651
作品 0
杭州
其他
私信 提问
[Python图像处理] 十二.图像几何变换之图像仿射变换、图像透视变换和图像校正

版权声明:本文为博主原创文章,转载请注明CSDN博客源地址!共同学习,一起进步~ https://blog.csdn.net/Eastmount/article/details/88679772 该系列文章是讲解Python OpenCV图像处理知识,前...

Eastmount
03/20
0
0
使用 OpenCV 和 Python 对图片进行旋转

OpenCV是应用最被广泛的的开源视觉库。他允许你使用很少的代码来检测图片或视频中的人脸。 这里有一些互联网上的教程来阐述怎么在OpenCV中使用仿射变换(affine transform)旋转图片--他们并...

oschina
2014/04/06
6K
0
(三)OpenCV中的图像处理之改变色彩空间及图像的几何变换

注释:本文翻译自OpenCV3.0.0 document->OpenCV-Python Tutorials,包括对原文档种错误代码的纠正 3.1 改变色彩空间 3.1.1 目标: 这章节,学会如何转换图像的色彩空间,如BGR与Gray之间的转...

u014403318
2018/05/28
0
0
6- OpenCV+TensorFlow 入门人工智能图像处理-图片移位

图片移位 opencvAPI实现 算法原理 源代码实现 原始图片和移位后图片 图片位移的算法原理 分析api实现原理 分析像素移动实现原理 偏移矩阵 完成矩阵的运算 输入的xy定义为C 结果: (10,20)->(1...

天涯明月笙
2018/05/05
0
0
基于OpenCV的iOS图像处理

关于图片处理 随着科技的发展,AI、机器学习、AR、VR等已经逐渐走进生活,模式识别、图像捕捉、图片拼接等已经成为其中的重要环节。因此,图像处理技术在未来会被移动端广泛使用。其中,有很...

无忌不悔
2017/09/06
0
0

没有更多内容

加载失败,请刷新页面

加载更多

聊聊Elasticsearch的MonitorService

序 本文主要研究一下Elasticsearch的MonitorService MonitorService elasticsearch-7.0.1/server/src/main/java/org/elasticsearch/monitor/MonitorService.java public class MonitorServic......

go4it
37分钟前
2
0
二、Docker

1、Docker - The TLDR(Too Long,Don't Read,Linxu 终端工具 ) Docker是在Linux和Windows上运行的软件。它创建、管理和编排容器。该软件以开源方式开发,在Github上作为Moby开源项目的一部分。...

倪伟伟
51分钟前
3
0
Python猫荐书系列之七:Python入门书籍有哪些?

本文原创并首发于公众号【Python猫】,未经授权,请勿转载。 原文地址:https://mp.weixin.qq.com/s/ArN-6mLPzPT8Zoq0Na_tsg 最近,猫哥的 Python 技术学习群里进来了几位比较特殊的同学:一...

豌豆花下猫
今天
5
0
Guava RateLimiter限流源码解析和实例应用

在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流 缓存 缓存的目的是提升系统访问速度和增大系统处理容量 降级 降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高...

算法之名
今天
13
0
国产达梦数据库与MySQL的区别

背景 由于项目上的需要,把项目实现国产化,把底层的MySQL数据库替换为国产的达梦数据库,花了一周的时间研究了国产的数据库-达梦数据库,它和MySQL有一定的区别,SQL的写法也有一些区别。 ...

TSMYK
今天
3
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部