【互动问答分享】第7期决胜云计算大数据时代Spark亚太研究院公益大讲堂

原创
2014/08/11 14:27
阅读数 133

 

“决胜云计算大数据时代”

Spark亚太研究院100期公益大讲堂 【第7期互动问答分享】

 

Q1:Spark中的RDD到底是什么?

  • RDD是Spark的核心抽象,可以把RDD看做“分布式函数编程语言”。

  • RDD有以下核心特征:

A list of partitions

A function for computing each split

A list of dependencies on other RDDs

Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)

Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)

  • RDD中有两种核心操作:Transformation和Action,Transformation时只会记录对数据操作的元数据,Action时会对数据进行计算并产出结果

     

Q2:Checkpoint和persist是什么类型的RDD呢?

  • RDD的Operation分为两类,transformation和action,其中transformation产生新的RDD,action产生新的数据。作为DAG的lineage对transformation进行存储,当action时执行lineage并产生数据。

  • checkpoint和persist是RDD比较特殊的两个操作, persist持久化RDD, checkpoint持久化RDD同时切断历史lineage。

  • Persist和checkpoint有违immutability的操作,它们实际上修改RDD meta info中的storage level和lineage,并返回修改过的RDD对象自身而非新的RDD对象.

     

Q3:Spark在运行的时候Driver程序运行在什么地方?

  • 在Standalone的模式下Driver运行在提交Spark Application的客户端;

  • 客户端能够提交Spark程序是应为安装了Spark;

  • Driver要负责程序的运行;

 

Q4:理解DAGScheduler对DAG Stage划分的诀窍是什么?

  • 一般而言出现从外部读取数据、进行Shuffle操作和写数据的时候会成为Stage划分的边界;

  • Stage内部的操作是Pipeline的,可以极大的提高程序运行效率;

  • Shuffle是两个Stage的划分点;

 

Q5:如何理解Narrow Dependencies和Wide Dependencies?

  • Narrow Dependencies和Wide Dependencies构成了Spark Lineage;

  • Narrow Dependencies:例如map、filter、union、join with inputs co-partitioned;

  • Wide Dependencies:例如groupByKey、join with inputs not co-partitioned;

  • 判断是Narrow Dependencies的关键就是左侧RDD Partition操作产出的结果是唯一右侧的RDD Partition;

  • 判断是Wide Dependencies的关键就是左侧RDD Partition操作产出的结果是至少两个右侧的RDD Partitions;

展开阅读全文
打赏
0
0 收藏
分享
加载中
更多评论
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部