文档章节

论文阅读 - Optimizing Graph Algorithms on Pregel-like

wdfnst
 wdfnst
发布于 2016/05/15 08:55
字数 245
阅读 4
收藏 0
  • Highlight, page 1
    Standard graph algorithms in this setting can incur unnecessary in- efficiencies such as slow convergence or high communication or computation cost

  • Highlight, page 1
    Standard graph algorithms in this setting can incur unnecessary in- efficiencies such as slow convergence or high communication or computation cost

  • Highlight, page 1
    large diameters or skew in component sizes.

  • Highlight, page 1
    performing some serial computation on a tiny fraction of the in- put graph

  • Underline, page 1
    complementing

  • Highlight, page 1
    our open-source Pregel implementation

  • Highlight, page 2
    FCS monitors the size of the “active” graph on which the computation is executing. If the active graph becomes small enough, FCS sends it to the master, which performs the end of the computation serially inside master.compute(), then sends the results back to the workers.

  • Highlight, page 2
    sets of vertices (called subvertices) are merged to form supervertices.

  • Highlight, page 6
    FCS monitors the size the active- subgraph. Once the size of the active-subgraph is below a threshold (5M edges by default), it sends the active-subgraph to the mas- ter, which performs the rest of the computation serially, and sends the results back to the workers.

  • Highlight, page 8
    Our SEAS optimiza- tion instead stores the edges of a supervertex s in a distributed fash- ion among all of its subvertices.

  • Highlight, page 8
    In our implementation of SEAS, subvertices store a pointer to their latest supervertices.

© 著作权归作者所有

共有 人打赏支持
wdfnst
粉丝 2
博文 27
码字总数 22859
作品 1
宁波
私信 提问
Spark GraphX Pregel API: An Example

GraphX Pregel API Graph data and graph processing is getting more and more attention lately in various fields. It has become apparent that a large number of real world problems ......

openthings
2016/09/02
98
1
Spark GraphX 编程指南

GraphX编程指南 (根据原文编辑:http://udn.yyuap.com/doc/spark-programming-guide-zh-cn/graphx-programming-guide/index.html) GraphX是一个新的(alpha)Spark API,它用于图和并行图(gr......

openthings
2016/08/29
50
0
GraphX Programming Guide

GraphX Overview GraphX is a new component in Spark for graphs and graph-parallel computation. At a high level, GraphX extends the Spark RDD by introducing a new Graph abstractio......

openthings
2016/08/29
10
0
Ravel计划开源图形数据库

Ravel,美国数据分析公司,希望提供一个受支持的Google Pregel 软件的开源版本,叫做GoldenOrb,来处理高伸缩性图形分析。 该公司将在本月31日发布GoldenOrb代码,并解释数据库如何帮助进行基...

老枪
2011/03/29
1K
1
100 open source Big Data architecture papers

Big Data technology has been extremely disruptive with open source playing a dominant role in shaping its evolution. While on one hand it has been disruptive, on the other it ha......

naughty
2016/04/05
55
0

没有更多内容

加载失败,请刷新页面

加载更多

数据集可视化---张量场的可视表示

中国龙-扬科
20分钟前
1
0
JavaScript创建对象方法实例小结

本文实例讲述了JavaScript创建对象方法。分享给大家供大家参考,具体如下: 最简单的方式就是创建一个Object对象,并为其添加属性和方法。 //示例代码var person=new Object()person.name=...

peakedness丶
21分钟前
1
0
GO 读写锁实现原理剖析

前言 TODO:简单说明读写锁用法及规则。 读写锁数据结构 类型定义 TODO: 源码中数据结构 TODO:讲解每个成员作用 接口定义 获取写锁 释放写锁 获取读锁 释放读锁 场景分析 写锁阻止写锁 TODO...

恋恋美食
26分钟前
1
0
Java核心(二)深入理解线程池ThreadPool

本文你将获得以下信息: 线程池源码解读 线程池执行流程分析 带返回值的线程池实现 延迟线程池实现 为了方便读者理解,本文会由浅入深,先从线程池的使用开始再延伸到源码解读和源码分析等高...

王磊的博客
27分钟前
3
0
web项目中的乱码问题原理分析

Java web开发过程经常遇到乱码,本篇我们探讨一下乱码产生的原因与解决思路。 一次完整的Web请求会有4次编解码转换,如下所示。 第一次:客户端(通常为浏览器)将字符转换成TCP字节流发向服...

fame_yao
31分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部