文档章节

最简单的目标跟踪(模版匹配)

moki_oschina
 moki_oschina
发布于 2016/11/25 11:17
字数 991
阅读 37
收藏 2
点赞 0
评论 0

一、概述

       目标跟踪是计算机视觉领域的一个重要分支。研究的人很多,近几年也出现了很多很多的算法。大家看看淋漓满目的paper就知道了。但在这里,我们也聚焦下比较简单的算法,看看它的优势在哪里。毕竟有时候简单就是一种美。

       在这里我们一起来欣赏下“模板匹配”这个简单点的跟踪算法。它的思想很简单,我们把要跟踪的目标保存好,然后在每一帧来临的时候,我们在整个图像中寻找与这个目标最相似的,我们就相信这个就是目标了。那如何判断相似呢?就用到了一些相关性的东西了,这个在我之前的一篇博文里面介绍过,大家可以参考下:

       模板匹配中差值的平方和(SSD)与互相关准则的关系

http://blog.csdn.net/zouxy09/article/details/8549743

       然后为了适应目标的变化,我们就需要随时更新我们要跟踪的目标。换句话来说,在跟踪t帧的时候,也就是在第t帧寻找目标的时候,是与t-1帧中我们找到的目标来进行比较的。这样目标的外观变化就会及时的更新。这个就叫做在线跟踪方法。当然了,这个策略会导致跟踪漂移的问题,这就是近几年很多跟踪算法关注的重要问题之一了。

 

二、代码实现

       我的代码是基于VS2010+ OpenCV2.4.2的。代码可以读入视频,也可以读摄像头,两者的选择只需要在代码中稍微修改即可。对于视频来说,运行会先显示第一帧,然后我们用鼠标框选要跟踪的目标,然后跟踪器开始跟踪每一帧。对摄像头来说,就会一直采集图像,然后我们用鼠标框选要跟踪的目标,接着跟踪器开始跟踪后面的每一帧。具体代码如下:

simpleTracker.cpp

// Object tracking algorithm using matchTemplate
// Author : zouxy
// Date   : 2013-10-28
// HomePage : http://blog.csdn.net/zouxy09
// Email  : zouxy09@qq.com

#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

// Global variables
Rect box;
bool drawing_box = false;
bool gotBB = false;

// bounding box mouse callback
void mouseHandler(int event, int x, int y, int flags, void *param){
  switch( event ){
  case CV_EVENT_MOUSEMOVE:
    if (drawing_box){
        box.width = x-box.x;
        box.height = y-box.y;
    }
    break;
  case CV_EVENT_LBUTTONDOWN:
    drawing_box = true;
    box = Rect( x, y, 0, 0 );
    break;
  case CV_EVENT_LBUTTONUP:
    drawing_box = false;
    if( box.width < 0 ){
        box.x += box.width;
        box.width *= -1;
    }
    if( box.height < 0 ){
        box.y += box.height;
        box.height *= -1;
    }
    gotBB = true;
    break;
  }
}


// tracker: get search patches around the last tracking box,
// and find the most similar one
void tracking(Mat frame, Mat &model, Rect &trackBox)
{
	Mat gray;
	cvtColor(frame, gray, CV_RGB2GRAY);

	Rect searchWindow;
	searchWindow.width = trackBox.width * 3;
	searchWindow.height = trackBox.height * 3;
	searchWindow.x = trackBox.x + trackBox.width * 0.5 - searchWindow.width * 0.5;
	searchWindow.y = trackBox.y + trackBox.height * 0.5 - searchWindow.height * 0.5;
	searchWindow &= Rect(0, 0, frame.cols, frame.rows);

	Mat similarity;
	matchTemplate(gray(searchWindow), model, similarity, CV_TM_CCOEFF_NORMED); 

	double mag_r;
	Point point;
	minMaxLoc(similarity, 0, &mag_r, 0, &point);
	trackBox.x = point.x + searchWindow.x;
	trackBox.y = point.y + searchWindow.y;
	model = gray(trackBox);
}

int main(int argc, char * argv[])
{
	VideoCapture capture;
	capture.open("david.mpg");
	bool fromfile = true;
	//Init camera
	if (!capture.isOpened())
	{
		cout << "capture device failed to open!" << endl;
		return -1;
	}
	//Register mouse callback to draw the bounding box
	cvNamedWindow("Tracker", CV_WINDOW_AUTOSIZE);
	cvSetMouseCallback("Tracker", mouseHandler, NULL ); 

	Mat frame, model;
	capture >> frame;
	while(!gotBB)
	{
		if (!fromfile)
			capture >> frame;

		imshow("Tracker", frame);
		if (cvWaitKey(20) == 'q')
			return 1;
	}
	//Remove callback
	cvSetMouseCallback("Tracker", NULL, NULL ); 
	
	Mat gray;
	cvtColor(frame, gray, CV_RGB2GRAY); 
	model = gray(box);

	int frameCount = 0;

	while (1)
	{
		capture >> frame;
		if (frame.empty())
			return -1;
		double t = (double)cvGetTickCount();
		frameCount++;

		// tracking
		tracking(frame, model, box);	

		// show
		stringstream buf;
		buf << frameCount;
		string num = buf.str();
		putText(frame, num, Point(20, 20), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 3);
		rectangle(frame, box, Scalar(0, 0, 255), 3);
		imshow("Tracker", frame);


		t = (double)cvGetTickCount() - t;
		cout << "cost time: " << t / ((double)cvGetTickFrequency()*1000.) << endl;

		if ( cvWaitKey(1) == 27 )
			break;
	}

	return 0;
}

三、结果

       我们对在目标跟踪领域一个benchmark的视频-david来测试下代码的效果。如下图所以,每帧的帧号在右上角所示。这个视频的光照变化是挺大的,但是简单的模板匹配方法还是可以挺有效的进行跟踪的,而且速度很快,在这个视频中,只花费了1ms左右(耗时的长度与目标框的大小和机器的性能有关)。

 

 

 

 

 

 

 

 

 

 

 

本文转载自:http://www.cnblogs.com/ywsoftware/p/4434306.html

共有 人打赏支持
moki_oschina
粉丝 24
博文 179
码字总数 22482
作品 0
成都
程序员
Visual Tracking via Adaptive Structural Local Sparse Appearance Model

Visual Tracking via Adaptive Structural Local Sparse Appearance Model 使用自适应的结构化局部外观模型的视觉跟踪 Abstract——摘要 Sparse representation has been applied to visual......

Quincuntial
2016/02/03
0
0
Robust Object Tracking via Sparsity-based Collaborative Model

Robust Object Tracking via Sparsity-based Collaborative Model 基于稀疏性协同模型的鲁棒目标跟踪 Abstract——摘要 In this paper we propose a robust object tracking algorithm usin......

Quincuntial
2016/02/03
0
0
近几年目标跟踪算法发展综述(下)

2016年 VOT2016【Index】今年算法比赛结果没什么特别大的意外,CNN和结合深度特征的算法都排名靠前,没毛病。今年你知道主办方干了一件大好事,就是把所能搜集到的算法代码都给公布了,良心啊...

crazyice521
2017/04/19
0
0
高斯反向投影实现检测图像中的特定物

regionproposalcat.png 高斯反向投影 在图像处理中,我们通常需要设置感兴趣的区域(ROI,region of interest),来简化我们的工作。也就是从图像中选择的一个图像区域,这个区域是我们图像分析...

Tony沈哲
2017/08/14
0
0
分享 | 带来全新交互体验的『支付宝AR』技术大解密

小蚂蚁说: AR是一种新颖的交互方式,与传统交互方式相比,可以让用户更深入地参与互动,给用户带来新体验。 而春节期间,支付宝的「扫福得福」活动也异常火爆,支付宝将AR与游戏、红包相结合...

兔子酱
04/26
0
0
目标跟踪算法----KCF进阶(基于KCF改进的算法总结)

一、前情提要 如果你对目标跟踪和KCF是什么东西还不了解的话欢迎你看前一篇博文KCF入门详解:http://blog.csdn.net/crazyice521/article/details/53525366。如果你已经对基于KCF的目标跟踪有...

crazyice521
2017/03/19
0
0
机器视觉&amp;语音识别

一、机器视觉: 摄像头视频采集,真彩色转256色,二值化,BP神经网络,训练或模版匹配。 动物体跟踪、立体物体定位,距离测试 二、语音: 识别(RAS),朗读(TTS)。 我想知道语音采集后怎么...

berryz2007
2010/12/12
0
0
Halcon基础知识(五)基于形状的模版匹配

createshapemodel(Template : : //reducedomain后的模板图像 NumLevels,//金字塔的层数,可设为“auto”或0—10的整数 AngleStart,//模板旋转的起始角度 AngleExtent,//模板旋转角度范围, >...

leo_888
05/12
0
0
Online Object Tracking: A Benchmark

Online Object Tracking: A Benchmark 在线目标跟踪:基准 Abstract——摘要 Object tracking is one of the most important components in numerous applications of computer vision. 目标......

Quincuntial
2016/02/03
0
0
【Python+OpenCV】目标跟踪-实现基本的运动检测

目标跟踪是对摄像头视频中的移动目标进行定位的过程,有着非常广泛的应用。实时目标跟踪是许多计算机视觉应用的重要任务,如监控、基于感知的用户界面、增强现实、基于对象的视频压缩以及辅助...

lwplwf
2017/06/21
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

流利阅读笔记28-20180717待学习

“我不干了!” 英国脱欧大臣递交辞呈 雪梨 2018-07-17 1.今日导读 7 月 6 日,英国政府高官齐聚英国首相的官方乡间别墅——契克斯庄园,讨论起草了一份关于英国政府脱欧立场的白皮书。可是没...

aibinxiao
25分钟前
2
0
OSChina 周二乱弹 —— 理解超算排名这个事,竟然超出了很多人的智商

Osc乱弹歌单(2018)请戳(这里) 【今日歌曲】 @-冰冰棒- :分享Ed Sheeran/Beyoncé的单曲《Perfect Duet (with Beyoncé)》 《Perfect Duet (with Beyoncé)》- Ed Sheeran/Beyoncé 手机...

小小编辑
36分钟前
23
3
Android 获取各大音乐平台的真实下载地址

废话 电脑使用谷歌浏览器或者QQ浏览器的时候。。。。。。。说不清楚,还是看图吧 大概意思就是,只要网页上需要播放,只要能播放并且开始播放,这个过程就肯定会请求到相关的音乐资源,然后就...

她叫我小渝
今天
0
0
shell中的函数、shell中的数组、告警系统需求分析

shell中的函数 格式: 格式: function f_name() { command } 函数必须要放在最前面 示例1(用来打印参数) 示例2(用于定义加法) 示例3(用于显示IP) shell中的数组 shell中的数组1 定义数...

Zhouliang6
今天
2
0
用 Scikit-Learn 和 Pandas 学习线性回归

      对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。 1. 获取数据,定义问题     没有...

wangxuwei
今天
1
0
MAC安装MAVEN

一:下载maven压缩包(Zip或tar可选),解压压缩包 二:打开终端输入:vim ~/.bash_profile(如果找不到该文件新建一个:touch ./bash_profile) 三:输入i 四:输入maven环境变量配置 MAVEN_HO...

WALK_MAN
今天
0
0
33.iptables备份与恢复 firewalld的9个zone以及操作 service的操作

10.19 iptables规则备份和恢复 10.20 firewalld的9个zone 10.21 firewalld关于zone的操作 10.22 firewalld关于service的操作 10.19 iptables规则备份和恢复: ~1. 保存和备份iptables规则 ~2...

王鑫linux
今天
2
0
大数据教程(2.11):keeperalived+nginx高可用集群搭建教程

上一章节博主为大家介绍了目前大型互联网项目的系统架构体系,相信大家应该注意到其中很重要的一块知识nginx技术,在本节博主将为大家分享nginx的相关技术以及配置过程。 一、nginx相关概念 ...

em_aaron
今天
1
0
Apache Directory Studio连接Weblogic内置LDAP

OBIEE默认使用Weblogic内置LDAP管理用户及组。 要整理已存在的用户及组,此前办法是导出安全数据,文本编辑器打开认证文件,使用正则表达式获取用户及组的信息。 后来想到直接用Apache Dire...

wffger
今天
2
0
HFS

FS,它是一种上传文件的软件。 专为个人用户所设计的 HTTP 档案系统 - Http File Server,如果您觉得架设 FTP Server 太麻烦,那么这个软件可以提供您更方便的档案传输系统,下载后无须安装,...

garkey
今天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部