文档章节

深入理解RunLoop(二)

 泊竹
发布于 2015/09/08 09:50
字数 1554
阅读 205
收藏 0

其内部代码整理如下 (太长了不想看可以直接跳过去,后面会有说明):

/// 用DefaultMode启动
void CFRunLoopRun(void) {
    CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
}
 
/// 用指定的Mode启动,允许设置RunLoop超时时间
int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
    return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}
 
/// RunLoop的实现
int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
    
    /// 首先根据modeName找到对应mode
    CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
    /// 如果mode里没有source/timer/observer, 直接返回。
    if (__CFRunLoopModeIsEmpty(currentMode)) return;
    
    /// 1. 通知 Observers: RunLoop 即将进入 loop。
    __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
    
    /// 内部函数,进入loop
    __CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
        
        Boolean sourceHandledThisLoop = NO;
        int retVal = 0;
        do {
 
            /// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
            __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
            /// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
            __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
            /// 执行被加入的block
            __CFRunLoopDoBlocks(runloop, currentMode);
            
            /// 4. RunLoop 触发 Source0 (非port) 回调。
            sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
            /// 执行被加入的block
            __CFRunLoopDoBlocks(runloop, currentMode);
 
            /// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
            if (__Source0DidDispatchPortLastTime) {
                Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
                if (hasMsg) goto handle_msg;
            }
            
            /// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
            if (!sourceHandledThisLoop) {
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
            }
            
            /// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
            /// • 一个基于 port 的Source 的事件。
            /// • 一个 Timer 到时间了
            /// • RunLoop 自身的超时时间到了
            /// • 被其他什么调用者手动唤醒
            __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
                mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
            }
 
            /// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
            __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
            
            /// 收到消息,处理消息。
            handle_msg:
 
            /// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
            if (msg_is_timer) {
                __CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
            } 
 
            /// 9.2 如果有dispatch到main_queue的block,执行block。
            else if (msg_is_dispatch) {
                __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
            } 
 
            /// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
            else {
                CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
                sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
                if (sourceHandledThisLoop) {
                    mach_msg(reply, MACH_SEND_MSG, reply);
                }
            }
            
            /// 执行加入到Loop的block
            __CFRunLoopDoBlocks(runloop, currentMode);
            
 
            if (sourceHandledThisLoop && stopAfterHandle) {
                /// 进入loop时参数说处理完事件就返回。
                retVal = kCFRunLoopRunHandledSource;
            } else if (timeout) {
                /// 超出传入参数标记的超时时间了
                retVal = kCFRunLoopRunTimedOut;
            } else if (__CFRunLoopIsStopped(runloop)) {
                /// 被外部调用者强制停止了
                retVal = kCFRunLoopRunStopped;
            } else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
                /// source/timer/observer一个都没有了
                retVal = kCFRunLoopRunFinished;
            }
            
            /// 如果没超时,mode里没空,loop也没被停止,那继续loop。
        } while (retVal == 0);
    }
    
    /// 10. 通知 Observers: RunLoop 即将退出。
    __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
}

可以看到,实际上 RunLoop 就是这样一个函数,其内部是一个 do-while 循环。当你调用 CFRunLoopRun() 时,线程就会一直停留在这个循环里;直到超时或被手动停止,该函数才会返回。

RunLoop 的底层实现

从上面代码可以看到,RunLoop 的核心是基于 mach port 的,其进入休眠时调用的函数是 mach_msg()。为了解释这个逻辑,下面稍微介绍一下 OSX/iOS 的系统架构。

苹果官方将整个系统大致划分为上述4个层次:
应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。
应用框架层即开发人员接触到的 Cocoa 等框架。
核心框架层包括各种核心框架、OpenGL 等内容。
Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。

我们在深入看一下 Darwin 这个核心的架构:

其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。
XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。
BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。

Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为"对象"。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。"消息"是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。

Mach 的消息定义是在 <mach/message.h> 头文件的,很简单:

typedef struct {
  mach_msg_header_t header;
  mach_msg_body_t body;
} mach_msg_base_t;
 
typedef struct {
  mach_msg_bits_t msgh_bits;
  mach_msg_size_t msgh_size;
  mach_port_t msgh_remote_port;
  mach_port_t msgh_local_port;
  mach_port_name_t msgh_voucher_port;
  mach_msg_id_t msgh_id;
} mach_msg_header_t;

一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口 local_port 和目标端口 remote_port,
发送和接受消息是通过同一个 API 进行的,其 option 标记了消息传递的方向:

mach_msg_return_t mach_msg(
			mach_msg_header_t *msg,
			mach_msg_option_t option,
			mach_msg_size_t send_size,
			mach_msg_size_t rcv_size,
			mach_port_name_t rcv_name,
			mach_msg_timeout_t timeout,
			mach_port_name_t notify);

为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:

这些概念可以参考维基百科: System_callTrap_(computing)

RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。

关于具体的如何利用 mach port 发送信息,可以看看 NSHipster 这一篇文章,或者这里的中文翻译 。

关于Mach的历史可以看看这篇很有趣的文章:Mac OS X 背后的故事(三)Mach 之父 Avie Tevanian

未完待续...



本文转载自:http://blog.ibireme.com/2015/05/18/runloop/

共有 人打赏支持
粉丝 90
博文 67
码字总数 13285
作品 0
徐汇
私信 提问
各个线程 Autorelease 对象的内存管理

最近和 bestswifter 、kuailejim 搞了一套模拟面试,然后不管是应届生还是工作两三年的高级工程师都对下面这几个问题比较懵逼,可能是开发中用到的不多,在这里浅浅的讨论下 Autoreleasepoo...

Joy_xx
2017/11/15
0
0
深入理解RunLoop

今天在整理笔记的时候发现的一篇以前摘下来的博客,目前看到的对RunLoop剖析最棒的一篇. 时间过的比较久,忘了博主和具体的出处了,有知道的请告知一下。 这里排版更清楚噢 RunLoop 的概念 ...

PetitBread
2017/06/12
0
0
深入理解RunLoop(一)

RunLoop 是 iOS 和 OSX 开发中非常基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。之后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释...

泊竹
2015/09/08
272
0
iOS 底层以及数据问题深入研究(1)

几周前有人问了我几个问题,我觉得自己能回答出来,但是深入的时候才发现自己还是浮在水表明,没有真正的去理解。所以将理解后易忽略的问题总结并记录下来 1 RunLoop --关于NStimer添加到NSR...

李周
2017/08/26
0
0
【Runloop】深入理解原理和机制

用runloop解决cpu空转 runloop运行模式 了解设置模式 runloop在哪里 使用方法 换起runloop的三种方式 额外了解

创意总监
2016/06/01
576
0

没有更多内容

加载失败,请刷新页面

加载更多

记录replugin使用的一个坑

反复编译插件放入宿主中,一直出现如下错误: android.content.res.Resources$NotFoundException: Resource ID #0x7f050000 type #0x5 is not valid 回滚代码,重启AS还是出错。最终发现将宿...

Gemini-Lin
今天
2
0
Vert.x系列(二)--EventBusImpl源码分析

前言:Vert.x 实现了2种完成不同的eventBus: EventBusImpl(A local event bus implementation)和 它的子类 ClusteredEventBus(An event bus implementation that clusters with other Ve......

冷基
今天
2
0
Perl - 获取文件项目

参考:http://www.runoob.com/perl/perl-directories.html 下面返回JSON格式的文件列表 #!/usr/bin/perluse strict;use warnings;use utf8;use feature ':5.26';require Fi......

wffger
昨天
3
0
vue组件系列3、查询下载

直接源码,虽然样式样式不好看,逻辑也不是最优,但是可以留作纪念。毕竟以后类似的功能只需要优化就可以了,不用每次都重头开始。。。 <template> <div class="pre_upload"> <div ...

轻轻的往前走
昨天
3
0
java浅复制和深复制

之前写了数组的复制,所以这里继续总结一下浅复制和深复制。 浅拷贝:对基本数据类型进行值传递,对引用数据类型进行引用传递般的拷贝。 深拷贝:对基本数据类型进行值传递,对引用数据类型,...

woshixin
昨天
3
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部