文档章节

OpenCV优化:图像的遍历4种方式

andyhe91
 andyhe91
发布于 2015/01/02 15:02
字数 2235
阅读 564
收藏 9

 

OpenCV优化:图像的遍历4种方式

分类: 算法学习2014-04-13 23:43 1312人阅读 评论(0) 收藏 举报

opencv

目录(?)[+]

OpenCV优化:图像的遍历4种方式

我们在实际应用中对图像进行的操作,往往并不是将图像作为一个整体进行操作,而是对图像中的所有点或特殊点进行运算,所以遍历图像就显得很重要,如何高效的遍历图像是一个很值得探讨的问题。

一、遍历图像的4种方式:at<typename>(i,j)

Mat类提供了一个at的方法用于取得图像上的点,它是一个模板函数,可以取到任何类型的图像上的点。下面我们通过一个图像处理中的实际来说明它的用法。

在实际应用中,我们很多时候需要对图像降色彩,因为256*256*256实在太多了,在图像颜色聚类或彩色直方图时,我们需要用一些代表性的颜色代替丰富的色彩空间,我们的思路是将每个通道的256种颜色用64种代替,即将原来256种颜色划分64个颜色段,每个颜色段取中间的颜色值作为代表色。

复制代码

 1 void colorReduce(Mat& image,int div) 2 { 3     for(int i=0;i<image.rows;i++) 4     { 5         for(int j=0;j<image.cols;j++) 6         { 7             image.at<Vec3b>(i,j)[0]=image.at<Vec3b>(i,j)[0]/div*div+div/2; 8             image.at<Vec3b>(i,j)[1]=image.at<Vec3b>(i,j)[1]/div*div+div/2; 9             image.at<Vec3b>(i,j)[2]=image.at<Vec3b>(i,j)[2]/div*div+div/2;10         }11     }12 }

复制代码

image

通过上面的例子我们可以看出,at方法取图像中的点的用法:

image.at<uchar>(i,j):取出灰度图像中i行j列的点。

image.at<Vec3b>(i,j)[k]:取出彩色图像中i行j列第k通道的颜色点。其中uchar,Vec3b都是图像像素值的类型,不要对Vec3b这种类型感觉害怕,其实在core里它是通过typedef Vec<T,N>来定义的,N代表元素的个数,T代表类型。

更简单一些的方法:OpenCV定义了一个Mat的模板子类为Mat_,它重载了operator()让我们可以更方便的取图像上的点。

Mat_<uchar> im=image;

im(i,j)=im(i,j)/div*div+div/2;

二、高效一点:用指针来遍历图像

上面的例程中可以看到,我们实际喜欢把原图传进函数内,但是在函数内我们对原图像进行了修改,而将原图作为一个结果输出,很多时候我们需要保留原图,这样我们需要一个原图的副本。

复制代码

 1 void colorReduce(const Mat& image,Mat& outImage,int div) 2 { 3     // 创建与原图像等尺寸的图像 4     outImage.create(image.size(),image.type()); 5     int nr=image.rows; 6     // 将3通道转换为1通道 7     int nl=image.cols*image.channels(); 8     for(int k=0;k<nr;k++) 9     {10         // 每一行图像的指针11         const uchar* inData=image.ptr<uchar>(k);12         uchar* outData=outImage.ptr<uchar>(k);13         for(int i=0;i<nl;i++)14         {15             outData[i]=inData[i]/div*div+div/2;16         }17     }18 }

复制代码

从上面的例子中可以看出,取出图像中第i行数据的指针:image.ptr<uchar>(i)。

值得说明的是:程序中将三通道的数据转换为1通道,在建立在每一行数据元素之间在内存里是连续存储的,每个像素三通道像素按顺序存储。也就是一幅图像数据最开始的三个值,是最左上角的那像素的三个通道的值。

但是这种用法不能用在行与行之间,因为图像在OpenCV里的存储机制问题,行与行之间可能有空白单元。这些空白单元对图像来说是没有意思的,只是为了在某些架构上能够更有效率,比如intel MMX可以更有效的处理那种个数是4或8倍数的行。但是我们可以申明一个连续的空间来存储图像,这个话题引入下面最为高效的遍历图像的机制。

三、更高效的方法

上面已经提到过了,一般来说图像行与行之间往往存储是不连续的,但是有些图像可以是连续的,Mat提供了一个检测图像是否连续的函数isContinuous()。当图像连通时,我们就可以把图像完全展开,看成是一行。

复制代码

 1 void colorReduce(const Mat& image,Mat& outImage,int div) 2 { 3     int nr=image.rows; 4     int nc=image.cols; 5     outImage.create(image.size(),image.type()); 6     if(image.isContinuous()&&outImage.isContinuous()) 7     { 8         nr=1; 9         nc=nc*image.rows*image.channels();10     }11     for(int i=0;i<nr;i++)12     {13         const uchar* inData=image.ptr<uchar>(i);14         uchar* outData=outImage.ptr<uchar>(i);15         for(int j=0;j<nc;j++)16         {17             *outData++=*inData++/div*div+div/2;18         }19     }20 }

复制代码

用指针除了用上面的方法外,还可以用指针来索引固定位置的像素:

image.step返回图像一行像素元素的个数(包括空白元素),image.elemSize()返回一个图像像素的大小。

&image.at<uchar>(i,j)=image.data+i*image.step+j*image.elemSize();

四、还有吗?用迭代器来遍历。

下面的方法可以让我们来为图像中的像素声明一个迭代器:

MatIterator_<Vec3b> it;

Mat_<Vec3b>::iterator it;

如果迭代器指向一个const图像,则可以用下面的声明:

MatConstIterator<Vec3b> it; 或者

Mat_<Vec3b>::const_iterator it;

下面我们用迭代器来简化上面的colorReduce程序:

复制代码

 1 void colorReduce(const Mat& image,Mat& outImage,int div) 2 { 3     outImage.create(image.size(),image.type()); 4     MatConstIterator_<Vec3b> it_in=image.begin<Vec3b>(); 5     MatConstIterator_<Vec3b> itend_in=image.end<Vec3b>(); 6     MatIterator_<Vec3b> it_out=outImage.begin<Vec3b>(); 7     MatIterator_<Vec3b> itend_out=outImage.end<Vec3b>(); 8     while(it_in!=itend_in) 9     {10         (*it_out)[0]=(*it_in)[0]/div*div+div/2;11         (*it_out)[1]=(*it_in)[1]/div*div+div/2;12         (*it_out)[2]=(*it_in)[2]/div*div+div/2;13         it_in++;14         it_out++;15     }16 }

复制代码

如果你想从第二行开始,则可以从image.begin<Vec3b>()+image.rows开始。

上面4种方法中,第3种方法的效率最高!

五、图像的邻域操作

很多时候,我们对图像处理时,要考虑它的邻域,比如3*3是我们常用的,这在图像滤波、去噪中最为常见,下面我们介绍如果在一次图像遍历过程中进行邻域的运算。

下面我们进行一个简单的滤波操作,滤波算子为[0 –1 0;-1 5 –1;0 –1 0]。

它可以让图像变得尖锐,而边缘更加突出。核心公式即:sharp(i.j)=5*image(i,j)-image(i-1,j)-image(i+1,j

)-image(i,j-1)-image(i,j+1)。

复制代码

 1 void ImgFilter2d(const Mat &image,Mat& result) 2 { 3     result.create(image.size(),image.type()); 4     int nr=image.rows; 5     int nc=image.cols*image.channels(); 6     for(int i=1;i<nr-1;i++) 7     { 8         const uchar* up_line=image.ptr<uchar>(i-1);//指向上一行 9         const uchar* mid_line=image.ptr<uchar>(i);//当前行10         const uchar* down_line=image.ptr<uchar>(i+1);//下一行11         uchar* cur_line=result.ptr<uchar>(i);12         for(int j=1;j<nc-1;j++)13         {14             cur_line[j]=saturate_cast<uchar>(5*mid_line[j]-mid_line[j-1]-mid_line[j+1]-15                 up_line[j]-down_line[j]);16         }17     }18     // 把图像边缘像素设置为019     result.row(0).setTo(Scalar(0));20     result.row(result.rows-1).setTo(Scalar(0));21     result.col(0).setTo(Scalar(0));22     result.col(result.cols-1).setTo(Scalar(0));23 }

复制代码

image

上面的程序有以下几点需要说明:

1,staturate_cast<typename>是一个类型转换函数,程序里是为了确保运算结果还在uchar范围内。

2,row和col方法返回图像中的某些行或列,返回值是一个Mat。

3,setTo方法将Mat对像中的点设置为一个值,Scalar(n)为一个灰度值,Scalar(a,b,c)为一个彩色值。

六、图像的算术运算

Mat类把很多算数操作符都进行了重载,让它们来符合矩阵的一些运算,如果+、-、点乘等。

下面我们来看看用位操作和基本算术运算来完成本文中的colorReduce程序,它更简单,更高效。

将256种灰度阶降到64位其实是抛弃了二进制最后面的4位,所以我们可以用位操作来做这一步处理。

首先我们计算2^8降到2^n中的n:int n=static_cast<int>(log(static_cast<double>(div))/log(2.0));

然后可以得到mask,mask=0xFF<<n;

用下面简直的语句就可以得到我们想要的结果:

result=(image&Scalar(mask,mask,mask))+Scalar(div/2,div/2,div/2);

很多时候我们需要对图像的一个通信单独进行操作,比如在HSV色彩模式下,我们就经常把3个通道分开考虑。

1 vector<Mat> planes;2 // 将image分为三个通道图像存储在planes中3 split(image,planes);4 planes[0]+=image2;5 // 将planes中三幅图像合为一个三通道图像6 merge(planes,result);

作者:☆Ronny丶

出处:http://www.cnblogs.com/ronny/

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。


© 著作权归作者所有

andyhe91
粉丝 58
博文 129
码字总数 209109
作品 0
长沙
私信 提问
基于OpenCV的iOS图像处理

关于图片处理 随着科技的发展,AI、机器学习、AR、VR等已经逐渐走进生活,模式识别、图像捕捉、图片拼接等已经成为其中的重要环节。因此,图像处理技术在未来会被移动端广泛使用。其中,有很...

无忌不悔
2017/09/06
0
0
世界上最好的语言PHP:我也可以用OpenCV搞计算机视觉

  选自Medium   作者:Vladimir Goncharov   机器之心编译   参与:Huiyuan Zhuo、思源、刘晓坤      作者 Vladimir Goncharov 平常主要关注与研究两个主题:PHP 和 Server Adm...

机器之心
2018/06/25
0
0
python 图像处理:一福变五福

快过年了,各种互联网产品都出来撒红包。某宝一年一度的集五福(shua hou)活动更是成为每年的必备活动。虽然到最后每人大概也就分个两块钱,但作为一个全民话题,大多数人还是愿意凑凑热闹。...

crossin
01/31
60
0
Python各类图像库的图片读写方式总结

转载来源:http://www.cnblogs.com/skyfsm/p/8276501.html Python各类图像库的图片读写方式总结 最近在研究深度学习视觉相关的东西,经常需要写python代码搭建深度学习模型。比如写CNN模型相...

chenxueying1993
2018/04/24
0
0
深刻了解OPENCV

OpenCV是Intel资助的开源计算机视觉库。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。 OpenCV 拥有包括 300 多个C/C++函数的跨平台的中、高层 API。...

红薯
2008/12/10
3.3K
3

没有更多内容

加载失败,请刷新页面

加载更多

arduino项目-1. 模拟楼道灯

@toc 1.1 情景说明 说明 漆黑的夜晚,当有人非法进入一所房屋,房屋内的灯在恰当的时间亮起,也许会有效阻止非法活动的继续。 效果展示 1.2 实验器材 器材名称 数量 继电器 1 人体红外感应器...

acktomas
30分钟前
4
0
Nacos 常见问题及解决方法

Nacos 开源至今已有一年,在这一年里,得到了很多用户的支持和反馈。在与社区的交流中,我们发现有一些问题出现的频率比较高,为了能够让用户更快的解决问题,我们总结了这篇常见问题及解决方...

阿里云官方博客
36分钟前
6
0
pinyin4j 满足中文转拼音的需求

引入依赖 // https://mvnrepository.com/artifact/com.belerweb/pinyin4j //汉字转拼音compile group: 'com.belerweb', name: 'pinyin4j', version: '2.5.1' 写入中文转拼英的工具......

edison_kwok
41分钟前
5
0
IPSE接入Substrate/Polkadot插槽实现互操作性的运行原理

Substrate框架将区块链的众多功能都模块化,对于开发者来说,只是一个选择的问题,同时还保持了众多的可以定制的功能和模块,比如底层通信模块,比如账户体系,比如共识机制等都是可以自己定...

IPSE
47分钟前
156
0
linux配置安装phpMyAdmin的步骤记录

1、首先在phpMyAdmin官方网站 http://www.phpmyadmin.net/downloads下载源码包,或者通过脚本之家进行下载://www.jb51.net/codes/405261.html ,下载后上传到服务器解压即可,或者通过Linux...

蜗牛女孩
49分钟前
6
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部