文档章节

Machine Learning(Andrew Ng) Notes 4

l
 lbing9002
发布于 2017/02/14 19:37
字数 511
阅读 24
收藏 0

https://www.coursera.org/learn/machine-learning/supplement/Bln5m/model-representation-i

Model Representation I Let's examine how we will represent a hypothesis function using neural networks. At a very simple level, neurons are basically computational units that take inputs (dendrites) as electrical inputs (called "spikes") that are channeled to outputs (axons). In our model, our dendrites are like the input features x1⋯xn, and the output is the result of our hypothesis function. In this model our x0 input node is sometimes called the "bias unit." It is always equal to 1. In neural networks, we use the same logistic function as in classification, 11+e−θTx, yet we sometimes call it a sigmoid (logistic) activation function. In this situation, our "theta" parameters are sometimes called "weights". Visually, a simplistic representation looks like: ⎡⎣x0x1x2⎤⎦→[ ]→hθ(x) Our input nodes (layer 1), also known as the "input layer", go into another node (layer 2), which finally outputs the hypothesis function, known as the "output layer". We can have intermediate layers of nodes between the input and output layers called the "hidden layers." In this example, we label these intermediate or "hidden" layer nodes a20⋯a2n and call them "activation units." a(j)i="activation" of unit i in layer jΘ(j)=matrix of weights controlling function mapping from layer j to layer j+1 If we had one hidden layer, it would look like: ⎡⎣⎢⎢x0x1x2x3⎤⎦⎥⎥→⎡⎣⎢⎢⎢a(2)1a(2)2a(2)3⎤⎦⎥⎥⎥→hθ(x) The values for each of the "activation" nodes is obtained as follows: a(2)1=g(Θ(1)10x0+Θ(1)11x1+Θ(1)12x2+Θ(1)13x3)a(2)2=g(Θ(1)20x0+Θ(1)21x1+Θ(1)22x2+Θ(1)23x3)a(2)3=g(Θ(1)30x0+Θ(1)31x1+Θ(1)32x2+Θ(1)33x3)hΘ(x)=a(3)1=g(Θ(2)10a(2)0+Θ(2)11a(2)1+Θ(2)12a(2)2+Θ(2)13a(2)3) This is saying that we compute our activation nodes by using a 3×4 matrix of parameters. We apply each row of the parameters to our inputs to obtain the value for one activation node. Our hypothesis output is the logistic function applied to the sum of the values of our activation nodes, which have been multiplied by yet another parameter matrix Θ(2) containing the weights for our second layer of nodes. Each layer gets its own matrix of weights, Θ(j). The dimensions of these matrices of weights is determined as follows: If network has sj units in layer j and sj+1 units in layer j+1, then Θ(j) will be of dimension sj+1×(sj+1). The +1 comes from the addition in Θ(j) of the "bias nodes," x0 and Θ(j)0. In other words the output nodes will not include the bias nodes while the inputs will. The following image summarizes our model representation: Example: layer 1 has 2 input nodes and layer 2 has 4 activation nodes. Dimension of Θ(1) is going to be 4×3 where sj=2 and sj+1=4, so sj+1×(sj+1)=4×3.

本文转载自:https://www.coursera.org/learn/machine-learning/supplement/Bln5m/model-representation-i

l
粉丝 0
博文 10
码字总数 637
作品 0
烟台
私信 提问
deep learning博客索引

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/robinXushuai/article/details/80686787 Notes of the specilization about deeplearning.ai provided by And......

_席达_
2018/06/15
0
0
使用Python进行机器学习的7步走

There are many Python machine learning resources freely availableonline. Where to begin? How to proceed? Go from zero to Python machinelearning hero in 7 steps! By Matthew Mayo.......

openthings
2016/03/09
266
0
机器学习资源积累

转自【资源】机器学习资源积累(积累中…) | 学步园+http://www.xuebuyuan.com/2200605.html Andrew Moore,邓侃在CMU的老板,机器学习和数据挖掘专家,写了很多关于数据挖掘和机器学习的P...

DCX_abc
2017/10/23
0
0
scruel/ML-AndrewNg-Notes

ML-AndrewNg-Notes 课程地址: https://www.coursera.org/learn/machine-learning (吴恩达老师在 Coursera 上的机器学习公开课) 本项目包含课程中的课后作业以及笔记: 笔记(notes)都为中文...

scruel
2018/05/07
0
0
机器学习资料大汇总

机器学习资料大汇总 作者:我爱机器学习(52ml.net) 注:本页面主要针对想快速上手机器学习而又不想深入研究的同学,对于专门的researcher,建议直接啃PRML,ESL,MLAPP以及你相应方向的书(比...

唐僧他大叔
2017/12/26
0
0

没有更多内容

加载失败,请刷新页面

加载更多

java通过ServerSocket与Socket实现通信

首先说一下ServerSocket与Socket. 1.ServerSocket ServerSocket是用来监听客户端Socket连接的类,如果没有连接会一直处于等待状态. ServetSocket有三个构造方法: (1) ServerSocket(int port);...

Blueeeeeee
今天
6
0
用 Sphinx 搭建博客时,如何自定义插件?

之前有不少同学看过我的个人博客(http://python-online.cn),也根据我写的教程完成了自己个人站点的搭建。 点此:使用 Python 30分钟 教你快速搭建一个博客 为防有的同学不清楚 Sphinx ,这...

王炳明
昨天
5
0
黑客之道-40本书籍助你快速入门黑客技术免费下载

场景 黑客是一个中文词语,皆源自英文hacker,随着灰鸽子的出现,灰鸽子成为了很多假借黑客名义控制他人电脑的黑客技术,于是出现了“骇客”与"黑客"分家。2012年电影频道节目中心出品的电影...

badaoliumang
昨天
16
0
很遗憾,没有一篇文章能讲清楚线程的生命周期!

(手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本。 简介 大家都知道线程是有生命周期,但是彤哥可以认真负责地告诉你网上几乎没有一篇文章讲得是完全正确的。 ...

彤哥读源码
昨天
18
0
jquery--DOM操作基础

本文转载于:专业的前端网站➭jquery--DOM操作基础 元素的访问 元素属性操作 获取:attr(name);$("#my").attr("src"); 设置:attr(name,value);$("#myImg").attr("src","images/1.jpg"); ......

前端老手
昨天
7
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部