浅述边缘计算场景下的云边端协同融合架构的应用场景示例

原创
2023/11/03 16:27
阅读数 47

云计算正在向一种更加全局化的分布式节点组合形态进阶,而边缘计算是云计算能力向边缘侧分布式拓展的新触角。随着城市建设进程加快,海量设备产生的数据,若上传到云端进行处理,会对云端造成巨大压力。如果利用边缘计算来让云端的能力下沉,则可以很好地解决海量数据的处理问题,让云端的数据处理压力得到有效地分摊。

对于边缘AI总体来说,核心诉求是高性能、低成本、高灵活性。以TSINGSEE青犀边缘计算AI智能分析网关为例,它的主要特点如下:

1)算力:支持高达17.6T的INT8峰值算力或2.2T的FP32高精度算力;

2)性能:支持高达16路1080P高清视频全流程处理,支持32路全高清视频硬件解码与2路编码;

3)算法:支持人/车/非/物识别、视频结构化、轨迹行为分析等多种算法移植;

4)场景:支持智慧园区/安防/工控/商业等多领域多场景灵活部署;

5)接口:支持USB、HDMI、RS-485、RS-232、SATA、自定义I/O等多种接口;

6)移植:支持Caffe/TensorFlow/PyTorch/MXNet/Paddle Lite等主流深度学习框架;

7)云边协同:支持Docker容器化、Kubernetes扩展管理,支持云端模型更新与设备管理、升级。

经过处理的数据从边缘节点汇聚到中心云,云计算做大数据分析挖掘、数据共享,同时进行算法模型的训练和升级,升级后的算法推送到边缘,使边缘设备更新和升级,完成自主学习闭环。TSINGSEE青犀边缘计算AI智能分析网关支持一键部署,及时生效,设备内置了二十多种AI算法,包括人车非结构化分析、人脸识别,行为分析、周界警戒、消防警戒等,能对视频中的人、车、物、行为等进行追踪与识别、上报识别结果,可应用在能源矿场、工厂、工地、危化行业、消防、电力、工业园区、校园安全等领域与场景中。

在场景应用中,通过将现场监控设备采集的数据经AI边缘智能分析后,分析结果统一汇聚至EasyCVR视频融合平台,并进行数据分析与统计的可视化结果展示,快速构建基于AI视频识别技术的大数据智能分析与安全风险预警平台,并能对常见的各类安全规范及行为进行监测与管控,如穿戴规范、在岗状态、危险行为、周界异常、作业区域环境异常(明火、烟雾)等,满足基于视频服务的数据感知、远程监控、智能识别、智能分析、智能告警等需求。

边缘智能有望尽可能地将深度学习计算从云端推向边缘,这使得开发各种分布式、低延迟和可靠的智能服务成为可能。与此同时,站在全局角度思考,中心云资源的分配、算力协同与调度等,也需要云边协同的模式进行部署与展开。

EasyCVR系统与AI智能分析网关在项目的部署中,则采取了这种云边端协同的模式,将云计算的能力下沉到边缘侧、设备侧,并通过中心进行统一交付、运维、管控,并且这种模式已经运用在了智慧城市、智慧交通、智慧工厂、智慧工地、智慧校园、智慧社区、智慧景区等领域中。

1)智慧安防:用于社区、楼宇、企业园区等场所的安防监管场景,如:人脸门禁、人员进出、车辆出入、周界防范、危险区域闯入、可疑徘徊等,对周界形成安全布控,弥补传统人工监控模式的效率低下等问题,可提高相关场所的安全管理与风险防范水平。

2)智慧安监:用于企业安全生产监管场景,如:工地、煤矿、危化品、加油站、烟花爆竹、电力等行业,有助于降低企业在生产过程中存在的安全隐患,保障企业安全生产。

3)智慧景区:用于景区、公园等场景,可实时统计监控范围内的游客流量、预警人群拥挤事件、防止危险区域有人员闯入、识别烟火、车辆违停等,可有效消除治安隐患,配合实现人流统计和安防管控。

4)城市管理:基于街面秩序检测、市容环境检测、突发事件检测、施工管理等AI算法模型,能及时发现城市监管中的各种违法违规问题,并能立即触发告警,让执法人员可以及时干预处理,实现城市管理的可感、可视、可管、可控,提升执法人员的工作效率。

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部