高斯模糊算法(gaussian)
博客专区 > tonyley 的博客 > 博客详情
高斯模糊算法(gaussian)
tonyley 发表于6年前
高斯模糊算法(gaussian)
  • 发表于 6年前
  • 阅读 4301
  • 收藏 4
  • 点赞 2
  • 评论 3

标题:腾讯云 新注册用户域名抢购1元起>>>   

项目上对图像处理需要用到点高斯算法,网上找到一篇对原理及部分问题分析讲解的还不错的文章,分享一下,后付自己的一段代码

 

- 理论 -

高斯分布函数可表示为一个一维的函数G(x)

 或者一个二维的函数G(x,y)

在这些函数中, X和Y代表了相对于原始中心点(center tap)像素的偏移(pixel offsets)值。也就是说,他们距离中心多少像素。这里的center tap,通常翻译为“中心抽头”,它在电学中的概念是:在整个次级线圈的中心拉出的一段导线上,它相对于另外两边的抽头电压居中,而为0,两边的电压就是一正一负。在这里,我们也可以做相似的理解。即,它表示,以某个像素为中心进行取样,假设它的坐标为(x,y),那么周围四个点的坐标就是(x-1,y)(x+1,y)(x,y-1)(x,y+1)。对于整个分布来说,我们也可以用一个平均参数来实施位移,从而取代center tap的作用。但这样的模糊不符合我们的要求,我们希望我们的分布是基于中心的。

函数中的σ,即“西格玛”。在统计学中,它常用来表示“标准差”。高斯模糊的标准差,表示模糊的延伸距离。它的缺省值一般设为1,你可以提高它,来获得更强的效果。

函数中的e是欧拉数(Euler's number),它的值一般取2.7。你可以到http://blog.sina.com.cn/s/blog_54ab9583010007u5.html看看精确到小数点后10000位的e。

这个函数的结果,就是以x(在一个方向上),或者(x,y)(在两个方向上),为中心的加权(weight)值,或者说该点在多大程度上影响模糊后的像素。

那么,它能获得什么样的结果呢?当σ 值取1时,我们可以得到:

G(0) = 0.3989422804

G(1) = G(-1) = 0.2419707245

G(2) = G(-2) = 0.0539909665

G(3) = G(-3) = 0.0044318484

......

这些结果有什么意义呢?

当x = 0时,表示这一点就是原始中心点(center tap), 这个点需要保留0.39(39%)的颜色

当x = 1以及x = -1时, 即有一个像素的位移时, 这一点需要保留0.24的颜色值

当x = 2以及x = -2时, 即有两个像素的位移时, 这一点需要保留0.05的颜色值

......

我们可以进行任意次这样的计算。 采样越高,精度越高。

相信现在你已经大致了解高斯模糊的原理了。

 

- 实际应用 -

当然,理论只是基于理想环境下的计算。在一次Bloom shader的测试中,我发现了两个问题:

1、模糊后的画面,其发光度和亮度大都比原始图像要低,画面显得很暗
2、上述的采样点(tap)的标准差是随意的吗?或者说,它有什么要求(或限制)?

以下各段,我将以一维高斯分布为例
首先解决明度问题。假设你有一个全白的单通道采样贴图,那么它所有的像素值都为1。经过第一次(水平方向)的高斯模糊运算之后,每个像素的值的总和,是所有高斯采样的加权总合。对于一个5 × 5的分布,标准差为1时,有:

ΣHBlur = G(0) + G(-1) + G(1) + G(-2) + G(2)

ΣHBlur = 0.9908656625

看起来似乎是正确的,其实不然。为了使明度不变,这个结果必须绝对是1。

基于此结果,在第二次运算后,它的值进一步下降为:ΣHVBlur = 0.9818147611

这就是说,我们必须增强加权值,通过确定的一个商,以取得正确的结果。答案非常简单,缺少了这个商,我们当然不能得到1:ΣHBlur^-1.

AugFactor = 1 / ΣHBlur

AugFactor = 1.009218543

如果我们再用这个增量,乘以该点的加权以及两个方向(水平、垂直)的运算,ΣHVBlur的值就是1了!

其次是标准差的问题。我使用的解决方案并不太“官方”,但是它确实有效。我们假设一个5 × 5的模糊必须有一个其值为1的标准差。现在我们知道,在一个5 × 5的分布中,距离中心最远的采样点,其加权值最小。其它尺寸的采样分布(比如7× 7),计算出各点的加权值也有这一规律(函数已经有了,你可以简单证明一下)。

要做的是,只调整标准差,以获取最后的采样点加权值,该值越接近这一结果越好。

σ = 1 -> G(2)aug = 0.054488685

σ = 1.745 -> G(3)aug = 0.054441945

σ = 2.7 -> G(4)aug = 0.054409483

这些都是我反复调试出的最接近的结果。所有这些权重增加,他们的和总是1。因此,寻找最佳标准差,最主要的是:尽可能多提取出模糊的采样数,而不产生偏差。

- 一维复合运算 | 二维单一运算 -

为什么会有一维和二维这两个函数呢?因为我们有两种选择:

1、使用一维函数的两次;一次横向,然后(以横向模糊的结果)再做一次垂直运算 ;

2、用二维函数,只需要一步就能完成。

你也许会问,既然有了二维函数,用它不就行了,何必要用一维函数进行两次计算,那多麻烦呀!我的第一反应是,这也许是因为早期Shader模型施加的一些限制。在做了更多的研究之后,我发现有一个更好的解释,来说明为什么要分开运算。

假设n是模糊的线性尺寸(或者说在水平/垂直方向的采样点数量),而p是整个画面的像素总数,那么:

在一维函数中,你要做2np次纹理采样

在一维函数中,你要做n²p次纹理采样

这意味着,如果你对一个512×512尺寸的图像做7×7采样的模糊,一位维函数需要做367万次搜索,而如果用二维函数,那么要完成这幅图像需要1284万次,是前者的3.5倍!

把一个二维坐标的点分解为两个一维的线性矢量是完全可能的,因为高斯模糊是一个可分割的卷积运算。具体的内容你可以到这里看看:http://nuttybar.drama.uga.edu/pipermail/dirgames-l/2002-December/020874.html

所以,为了追求更快的速度、更高的效率,我宁可放弃二维函数。

以上内容引自『听阿泽哥哥讲道理 http://blog.sina.com.cn/s/blog_4b97ab670100aa3a.html 』  

以下是自己C语言实现的一个gaussian函数

/**
 * 高斯模糊算法
 *
 * @Author : Lei Guoting
 * @Date   : 2012-07-04
 *
 * @Param inPixels 原始图片Pixels
 * @Param outPixels 处理后输出图片Pixels
 * @Circle 自定义结构体,定义一个需要被高斯模糊处理的园的位置大小
 * @AndroidBitmapInfo 原始图片Bitmap信息
 */
void gaussian(void** inPixels,void** outPixels,Circle tGassCir,AndroidBitmapInfo bitmapInfo)
{
	uint32_t x,y;
	uint32_t tx,ty;
	uint8_t *tInPixel, *tOutPixel;
	double tR = 0.0,tG = 0.0,tB = 0.0,tCount = 0.0;
	double ar = 8,dif,gauss;
	int range = ar * 3;
	int startx,endx,starty,endy;
	int m;
	int sx,sy;
	uint32_t top,left,right,bottom;
	LOGD("filter @gaussian center.x=%d,center.y=%d",tGassCir.center.x,tGassCir.center.y);
	top = tGassCir.center.y - tGassCir.r;
	bottom = tGassCir.center.y + tGassCir.r;
	left = tGassCir.center.x - tGassCir.r;
	right = tGassCir.center.x + tGassCir.r;
    if(top < 0){
    	top = 0;
    }
    if(bottom > bitmapInfo.height - 1){
    	bottom = bitmapInfo.height - 1;
    }
    if(left < 0){
    	left = 0;
    }
    if(right > bitmapInfo.width - 1){
    	right = bitmapInfo.width - 1;
    }
	//The dimension of X
	LOGD("filter @gaussian begin..");
	LOGD("top=%d,bottom=%d,left=%d,right=%d",top,bottom,left,right);
	Point tDo[(bottom - top +1) * (right - left +1)];
	uint32_t tDoLen = 0;
    for(y = top; y <= bottom; y ++){
       for(x = left; x <= right; x ++){
    	   /*
    	   if(sqrt(pow((x - tGassCir.center.x),2) + pow((y - tGassCir.center.y),2)) > tGassCir.r){
              continue;
    	   }
    	   */

    	   if(sqrt((x - tGassCir.center.x) * (x - tGassCir.center.x) + (y - tGassCir.center.y) * (y - tGassCir.center.y)) > tGassCir.r){
    		   continue;
    	   }
    	   Point p = {x,y};
    	   tDo[tDoLen] = p;
    	   tDoLen ++;

    	   tOutPixel = (uint8_t* )*outPixels + (y * bitmapInfo.width + x) * 4;
    	   startx = (x < range ? -x : -range);
    	   endx = ((bitmapInfo.width <= x + range) ? (bitmapInfo.width - x - 1) : range);

    	   //x dimension
    	   tR = tG = tB = tCount = 0.0;
    	   for(m = startx; m <= endx; m ++){
    		   tInPixel = (uint8_t* )*inPixels + (y * bitmapInfo.width + (x + m)) * 4;
    		   dif = m*m;
    		   gauss = exp(-dif/(2*ar*ar));
    		   tR += gauss * *(tInPixel + 0);
    		   tG += gauss * *(tInPixel + 1);
    		   tB += gauss * *(tInPixel + 2);
    		   tCount += gauss;
           }
    	   *(tOutPixel + 0) = tR / tCount;
    	   *(tOutPixel + 1) = tG / tCount;
    	   *(tOutPixel + 2) = tB / tCount;
       }
    }

    //y dimension
    uint32_t ind = 0;
    Point p;
    for(ind = 0; ind < tDoLen; ind ++){
       p = tDo[ind];
       tOutPixel = (uint8_t* )*outPixels + (p.y * bitmapInfo.width + p.x) * 4;
       starty = (p.y < range ? -p.y : -range);
       endy = ((bitmapInfo.height <= p.y + range) ? (bitmapInfo.height - p.y - 1) : range);
       tR = tG = tB = tCount = 0.0;
       for(m = starty; m <= endy; m ++){
          tInPixel = (uint8_t* )*outPixels + ((p.y + m) * bitmapInfo.width + p.x) * 4;
          dif = m*m;
          gauss = exp(-dif/(2*ar*ar));
          tR += gauss * *(tInPixel + 0);
          tG += gauss * *(tInPixel + 1);
          tB += gauss * *(tInPixel + 2);
          tCount += gauss;
       }
       *(tOutPixel + 0) = tR / tCount;
       *(tOutPixel + 1) = tG / tCount;
       *(tOutPixel + 2) = tB / tCount;
    }
    LOGD("filter @gaussian end!");
}

typedef struct{
	uint32_t x;
	uint32_t y;
}Point;

typedef struct{
	Point center;
	int r;
}Circle;

gaussian加权的时候为了尽量快一点时间,稍微省略了点。

效果图:

标签: 高斯 gaussian
共有 人打赏支持
粉丝 12
博文 12
码字总数 7704
评论 (3)
luotingzhang
顶起,说的不错,呵呵!!
水户洋平
楼主,有没有效果图的源码??? 求一份~,谢谢 617434879@qq.com
tonyley

引用来自“水户洋平”的评论

楼主,有没有效果图的源码??? 求一份~,谢谢 617434879@qq.com
博客中的代码就是效果图的源代码。
×
tonyley
如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
* 金额(元)
¥1 ¥5 ¥10 ¥20 其他金额
打赏人
留言
* 支付类型
微信扫码支付
打赏金额:
已支付成功
打赏金额: