文档章节

用Python实现一个大数据搜索引擎

naughty
 naughty
发布于 2017/11/24 10:49
字数 2240
阅读 3616
收藏 143

搜索是大数据领域里常见的需求。Splunk和ELK分别是该领域在非开源和开源领域里的领导者。本文利用很少的Python代码实现了一个基本的数据搜索功能,试图让大家理解大数据搜索的基本原理。

布隆过滤器 (Bloom Filter)

第一步我们先要实现一个布隆过滤器

布隆过滤器是大数据领域的一个常见算法,它的目的是过滤掉那些不是目标的元素。也就是说如果一个要搜索的词并不存在与我的数据中,那么它可以以很快的速度返回目标不存在。

让我们看看以下布隆过滤器的代码:

class Bloomfilter(object):
    """
    A Bloom filter is a probabilistic data-structure that trades space for accuracy
    when determining if a value is in a set.  It can tell you if a value was possibly
    added, or if it was definitely not added, but it can't tell you for certain that
    it was added.
    """
    def __init__(self, size):
        """Setup the BF with the appropriate size"""
        self.values = [False] * size
        self.size = size

    def hash_value(self, value):
        """Hash the value provided and scale it to fit the BF size"""
        return hash(value) % self.size

    def add_value(self, value):
        """Add a value to the BF"""
        h = self.hash_value(value)
        self.values[h] = True

    def might_contain(self, value):
        """Check if the value might be in the BF"""
        h = self.hash_value(value)
        return self.values[h]

    def print_contents(self):
        """Dump the contents of the BF for debugging purposes"""
        print self.values
  • 基本的数据结构是个数组(实际上是个位图,用1/0来记录数据是否存在),初始化是没有任何内容,所以全部置False。实际的使用当中,该数组的长度是非常大的,以保证效率。
  • 利用哈希算法来决定数据应该存在哪一位,也就是数组的索引
  • 当一个数据被加入到布隆过滤器的时候,计算它的哈希值然后把相应的位置为True
  • 当检查一个数据是否已经存在或者说被索引过的时候,只要检查对应的哈希值所在的位的True/Fasle

看到这里,大家应该可以看出,如果布隆过滤器返回False,那么数据一定是没有索引过的,然而如果返回True,那也不能说数据一定就已经被索引过。在搜索过程中使用布隆过滤器可以使得很多没有命中的搜索提前返回来提高效率。

我们看看这段 code是如何运行的:

bf = Bloomfilter(10)
bf.add_value('dog')
bf.add_value('fish')
bf.add_value('cat')
bf.print_contents()
bf.add_value('bird')
bf.print_contents()
# Note: contents are unchanged after adding bird - it collides
for term in ['dog', 'fish', 'cat', 'bird', 'duck', 'emu']:
    print '{}: {} {}'.format(term, bf.hash_value(term), bf.might_contain(term))

结果:

[False, False, False, False, True, True, False, False, False, True]
[False, False, False, False, True, True, False, False, False, True]
dog: 5 True
fish: 4 True
cat: 9 True
bird: 9 True
duck: 5 True
emu: 8 False

首先创建了一个容量为10的的布隆过滤器

然后分别加入 ‘dog’,‘fish’,‘cat’三个对象,这时的布隆过滤器的内容如下:

然后加入‘bird’对象,布隆过滤器的内容并没有改变,因为‘bird’和‘fish’恰好拥有相同的哈希。

最后我们检查一堆对象('dog', 'fish', 'cat', 'bird', 'duck', 'emu')是不是已经被索引了。结果发现‘duck’返回True,2而‘emu’返回False。因为‘duck’的哈希恰好和‘dog’是一样的。

分词 

下面一步我们要实现分词。 分词的目的是要把我们的文本数据分割成可搜索的最小单元,也就是词。这里我们主要针对英语,因为中文的分词涉及到自然语言处理,比较复杂,而英文基本只要用标点符号就好了。

下面我们看看分词的代码:

def major_segments(s):
    """
    Perform major segmenting on a string.  Split the string by all of the major
    breaks, and return the set of everything found.  The breaks in this implementation
    are single characters, but in Splunk proper they can be multiple characters.
    A set is used because ordering doesn't matter, and duplicates are bad.
    """
    major_breaks = ' '
    last = -1
    results = set()

    # enumerate() will give us (0, s[0]), (1, s[1]), ...
    for idx, ch in enumerate(s):
        if ch in major_breaks:
            segment = s[last+1:idx]
            results.add(segment)

            last = idx

    # The last character may not be a break so always capture
    # the last segment (which may end up being "", but yolo)    
    segment = s[last+1:]
    results.add(segment)

    return results

主要分割

主要分割使用空格来分词,实际的分词逻辑中,还会有其它的分隔符。例如Splunk的缺省分割符包括以下这些,用户也可以定义自己的分割符。

] < > ( ) { } | ! ; , ' " * \n \r \s \t & ? + %21 %26 %2526 %3B %7C %20 %2B %3D -- %2520 %5D %5B %3A %0A %2C %28 %29

def minor_segments(s):
    """
    Perform minor segmenting on a string.  This is like major
    segmenting, except it also captures from the start of the
    input to each break.
    """
    minor_breaks = '_.'
    last = -1
    results = set()

    for idx, ch in enumerate(s):
        if ch in minor_breaks:
            segment = s[last+1:idx]
            results.add(segment)

            segment = s[:idx]
            results.add(segment)

            last = idx

    segment = s[last+1:]
    results.add(segment)
    results.add(s)

    return results

次要分割

次要分割和主要分割的逻辑类似,只是还会把从开始部分到当前分割的结果加入。例如“1.2.3.4”的次要分割会有1,2,3,4,1.2,1.2.3

def segments(event):
    """Simple wrapper around major_segments / minor_segments"""
    results = set()
    for major in major_segments(event):
        for minor in minor_segments(major):
            results.add(minor)
    return results

分词的逻辑就是对文本先进行主要分割,对每一个主要分割在进行次要分割。然后把所有分出来的词返回。

我们看看这段 code是如何运行的:

for term in segments('src_ip = 1.2.3.4'):
        print term
src
1.2
1.2.3.4
src_ip
3
1
1.2.3
ip
2
=
4

搜索

好了,有个分词和布隆过滤器这两个利器的支撑后,我们就可以来实现搜索的功能了。

上代码:

class Splunk(object):
    def __init__(self):
        self.bf = Bloomfilter(64)
        self.terms = {}  # Dictionary of term to set of events
        self.events = []
    
    def add_event(self, event):
        """Adds an event to this object"""

        # Generate a unique ID for the event, and save it
        event_id = len(self.events)
        self.events.append(event)

        # Add each term to the bloomfilter, and track the event by each term
        for term in segments(event):
            self.bf.add_value(term)

            if term not in self.terms:
                self.terms[term] = set()
            self.terms[term].add(event_id)

    def search(self, term):
        """Search for a single term, and yield all the events that contain it"""
        
        # In Splunk this runs in O(1), and is likely to be in filesystem cache (memory)
        if not self.bf.might_contain(term):
            return

        # In Splunk this probably runs in O(log N) where N is the number of terms in the tsidx
        if term not in self.terms:
            return

        for event_id in sorted(self.terms[term]):
            yield self.events[event_id]
  • Splunk代表一个拥有搜索功能的索引集合
  • 每一个集合中包含一个布隆过滤器,一个倒排词表(字典),和一个存储所有事件的数组
  • 当一个事件被加入到索引的时候,会做以下的逻辑
    • 为每一个事件生成一个unqie id,这里就是序号
    • 对事件进行分词,把每一个词加入到倒排词表,也就是每一个词对应的事件的id的映射结构,注意,一个词可能对应多个事件,所以倒排表的的值是一个Set。倒排表是绝大部分搜索引擎的核心功能。
  • 当一个词被搜索的时候,会做以下的逻辑
    • 检查布隆过滤器,如果为假,直接返回
    • 检查词表,如果被搜索单词不在词表中,直接返回
    • 在倒排表中找到所有对应的事件id,然后返回事件的内容

我们运行下看看把:

s = Splunk()
s.add_event('src_ip = 1.2.3.4')
s.add_event('src_ip = 5.6.7.8')
s.add_event('dst_ip = 1.2.3.4')

for event in s.search('1.2.3.4'):
    print event
print '-'
for event in s.search('src_ip'):
    print event
print '-'
for event in s.search('ip'):
    print event
src_ip = 1.2.3.4
dst_ip = 1.2.3.4
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
dst_ip = 1.2.3.4

是不是很赞!

更复杂的搜索

更进一步,在搜索过程中,我们想用And和Or来实现更复杂的搜索逻辑。

上代码:

class SplunkM(object):
    def __init__(self):
        self.bf = Bloomfilter(64)
        self.terms = {}  # Dictionary of term to set of events
        self.events = []
    
    def add_event(self, event):
        """Adds an event to this object"""

        # Generate a unique ID for the event, and save it
        event_id = len(self.events)
        self.events.append(event)

        # Add each term to the bloomfilter, and track the event by each term
        for term in segments(event):
            self.bf.add_value(term)
            if term not in self.terms:
                self.terms[term] = set()
            
            self.terms[term].add(event_id)

    def search_all(self, terms):
        """Search for an AND of all terms"""

        # Start with the universe of all events...
        results = set(range(len(self.events)))

        for term in terms:
            # If a term isn't present at all then we can stop looking
            if not self.bf.might_contain(term):
                return
            if term not in self.terms:
                return

            # Drop events that don't match from our results
            results = results.intersection(self.terms[term])

        for event_id in sorted(results):
            yield self.events[event_id]


    def search_any(self, terms):
        """Search for an OR of all terms"""
        results = set()

        for term in terms:
            # If a term isn't present, we skip it, but don't stop
            if not self.bf.might_contain(term):
                continue
            if term not in self.terms:
                continue

            # Add these events to our results
            results = results.union(self.terms[term])

        for event_id in sorted(results):
            yield self.events[event_id]

利用Python集合的intersection和union操作,可以很方便的支持And(求交集)和Or(求合集)的操作。

运行结果如下:

s = SplunkM()
s.add_event('src_ip = 1.2.3.4')
s.add_event('src_ip = 5.6.7.8')
s.add_event('dst_ip = 1.2.3.4')

for event in s.search_all(['src_ip', '5.6']):
    print event
print '-'
for event in s.search_any(['src_ip', 'dst_ip']):
    print event
src_ip = 5.6.7.8
-
src_ip = 1.2.3.4
src_ip = 5.6.7.8
dst_ip = 1.2.3.4

 

总结

以上的代码只是为了说明大数据搜索的基本原理,包括布隆过滤器,分词和倒排表。如果大家真的想要利用这代码来实现真正的搜索功能,还差的太远。所有的内容来自于Splunk Conf2017。大家如果有兴趣可以去看网上的视频。

© 著作权归作者所有

共有 人打赏支持
naughty
粉丝 266
博文 62
码字总数 112619
作品 0
其它
架构师
私信 提问
加载中

评论(3)

hlStack
hlStack
必须支持
singasong1995
singasong1995
支持一下��
电子工业出版社编辑
电子工业出版社编辑
赞!
PyConChina2016 (北京)

大会详情 开源编程语言Python近年来在互联网、游戏、云计算、大数据、运维、企业软件等领域有非常多的应用。 PyCon大会是Python语言社群全球性的盛会,PyConChina 是由 CPyUG(华蠎用户组)获得...

活动家
2016/09/05
1K
3
Whoosh 原理与实战1--Python 搜索框架 Whoosh 简介

Whoosh 是一个纯 Python 编写的搜索框架,类似于Lucene。比较简单,可以快速构建站内搜索。也可以在此基础上构建搜索引擎,但需要自己扩展 爬虫Spider 和 中文分词组件。 Whoosh详细可以查看...

从前
2012/11/12
0
2
【上海场】中国Python开发者大会PyConChina2017 - 10/22

大会简介 【上海场报名链接】 http://www.huodongxing.com/go/pyconchina2017sh 【杭州场报名链接】 http://www.huodongxing.com/go/pyconchina2017hz 今年,IEEE Spectrum 发布了第四届顶级...

TopGeek
2017/09/21
0
0
涨!涨!涨!2018年Python 工程师薪资再次刷出新高度

闻名的TIOBE排行榜刚刚发布最新的2018年2月编程言语排名榜。TIOBE编程社区索引是编程言语评价的一个指标,该指数每月更新一次。小伙伴们赶忙看看下面的排名情况吧! TIOBE编程社区指数是流行...

python进阶者
03/01
0
0
6个最高效的语言处理Python库,你用过几个?

最近一段时间Python已经成为数据科学行业中大火的编程语言,今天技术学派收集了一些较为高效的语言处理Python库。下面分享给大家。 1.NLTK NLTK是构建Python程序以处理人类语言数据的领先平台...

Python燕大侠
06/05
0
0

没有更多内容

加载失败,请刷新页面

加载更多

搭建Git服务器

Windows平台下搭建Git服务器 1、在自己电脑搭建Git服务器,且只有自己的电脑能访问。 即使是自己一个人在开发代码也强烈建议使用Git来管理代码。当然也可以只使用本地Git仓库的形式来管理代码...

国仔饼
10分钟前
0
0
百万并发下的Nginx优化,看这一篇就够了!

本文作者主要分享在 Nginx 性能方面的实践经验,希望能给大家带来一些系统化思考,帮助大家更有效地去做 Nginx。 优化方法论 我重点分享如下两个问题: 保持并发连接数,怎么样做到内存有效使...

JackFace
13分钟前
0
0
中学生读《皮囊》有感相关体会4300字[图]

中学生读《皮囊》有感相关体会4300字[图]: 我们时常知道从哪里来,但很少知道自己要到哪里去,因为我们经常不认识自己,又怎能看见自己皮囊下最真实的面目?——题记 满怀欣喜去迎接五一,应...

原创小博客
21分钟前
2
0
java_集合

非并发集合 并发集合

grace_233
23分钟前
1
0
正则表达式匹配不包含

^((?!xxx).)*$

安小乐
34分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部