文档章节

贝叶斯推断及其互联网应用(一):定理简介

tantexian
 tantexian
发布于 2017/07/04 21:17
字数 1865
阅读 11
收藏 0

一、什么是贝叶斯推断

贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。

它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。

贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正。正是因为它的主观性太强,曾经遭到许多统计学家的诟病。

贝叶斯推断需要大量的计算,因此历史上很长一段时间,无法得到广泛应用。只有计算机诞生以后,它才获得真正的重视。人们发现,许多统计量是无法事先进行客观判断的,而互联网时代出现的大型数据集,再加上高速运算能力,为验证这些统计量提供了方便,也为应用贝叶斯推断创造了条件,它的威力正在日益显现。

二、贝叶斯定理

要理解贝叶斯推断,必须先理解贝叶斯定理。后者实际上就是计算"条件概率"的公式。

所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

因此,

同理可得,

所以,

这就是条件概率的计算公式。

三、全概率公式

由于后面要用到,所以除了条件概率以外,这里还要推导全概率公式。

假定样本空间S,是两个事件A与A'的和。

上图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

在上一节的推导当中,我们已知

所以,

这就是全概率公式。它的含义是,如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

四、贝叶斯推断的含义

对条件概率公式进行变形,可以得到如下形式:

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

所以,条件概率可以理解成下面的式子:

  后验概率 = 先验概率 x 调整因子

这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。

在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。

五、【例子】水果糖问题

为了加深对贝叶斯推断的理解,我们看两个例子。

第一个例子。两个一模一样的碗,一号碗有30颗水果糖和10颗巧克力糖,二号碗有水果糖和巧克力糖各20颗。现在随机选择一个碗,从中摸出一颗糖,发现是水果糖。请问这颗水果糖来自一号碗的概率有多大?

我们假定,H1表示一号碗,H2表示二号碗。由于这两个碗是一样的,所以P(H1)=P(H2),也就是说,在取出水果糖之前,这两个碗被选中的概率相同。因此,P(H1)=0.5,我们把这个概率就叫做"先验概率",即没有做实验之前,来自一号碗的概率是0.5。

再假定,E表示水果糖,所以问题就变成了在已知E的情况下,来自一号碗的概率有多大,即求P(H1|E)。我们把这个概率叫做"后验概率",即在E事件发生之后,对P(H1)的修正。

根据条件概率公式,得到

已知,P(H1)等于0.5,P(E|H1)为一号碗中取出水果糖的概率,等于0.75,那么求出P(E)就可以得到答案。根据全概率公式,

所以,

将数字代入原方程,得到

这表明,来自一号碗的概率是0.6。也就是说,取出水果糖之后,H1事件的可能性得到了增强。

六、【例子】假阳性问题

第二个例子是一个医学的常见问题,与现实生活关系紧密。

已知某种疾病的发病率是0.001,即1000人中会有1个人得病。现有一种试剂可以检验患者是否得病,它的准确率是0.99,即在患者确实得病的情况下,它有99%的可能呈现阳性。它的误报率是5%,即在患者没有得病的情况下,它有5%的可能呈现阳性。现有一个病人的检验结果为阳性,请问他确实得病的可能性有多大?

假定A事件表示得病,那么P(A)为0.001。这就是"先验概率",即没有做试验之前,我们预计的发病率。再假定B事件表示阳性,那么要计算的就是P(A|B)。这就是"后验概率",即做了试验以后,对发病率的估计。

根据条件概率公式,

用全概率公式改写分母,

将数字代入,

我们得到了一个惊人的结果,P(A|B)约等于0.019。也就是说,即使检验呈现阳性,病人得病的概率,也只是从0.1%增加到了2%左右。这就是所谓的"假阳性",即阳性结果完全不足以说明病人得病。

为什么会这样?为什么这种检验的准确率高达99%,但是可信度却不到2%?答案是与它的误报率太高有关。(【习题】如果误报率从5%降为1%,请问病人得病的概率会变成多少?)

有兴趣的朋友,还可以算一下"假阴性"问题,即检验结果为阴性,但是病人确实得病的概率有多大。然后问自己,"假阳性"和"假阴性",哪一个才是医学检验的主要风险?

===================================

关于贝叶斯推断的原理部分,今天就讲到这里。下一次,将介绍如何使用贝叶斯推断过滤垃圾邮件

(未完待续)

© 著作权归作者所有

共有 人打赏支持
tantexian
粉丝 207
博文 513
码字总数 733413
作品 0
成都
架构师
私信 提问
加载中

评论(4)

tantexian
tantexian

引用来自“茂戈”的评论

又开始转向新方向了

回复@茂戈 : 又被你发现了,哈哈
茂戈
又开始转向新方向了
茂戈
又开始转向新方向了
茂戈
又开始转向新方向了
深度学习贝叶斯,这是一份密集的6天速成课程

教师 多数讲师和助教都是贝叶斯方法研究团队的成员以及来自世界顶级研究中心的研究者。很多讲师曾经在顶级国际机器学习会议例如 NIPS、ICML、ICCV、CVPR、ICLR、AISTATS 等发表过论文。贝叶斯...

技术小能手
09/26
0
0
深度学习贝叶斯,这是一份密集的6天速成课程(视频与PPT)

选自GitHub,Bayesian Methods Research Group,机器之心整理。 在 Deep|Bayes 夏季课程中,授课人将讨论贝叶斯方法如何结合深度学习,并在机器学习应用中实现更好的结果。近期研究表明贝叶斯...

机器之心
09/10
0
0
北邮在线,贝叶斯算法——不识贝叶斯算法的码农不是好码农

  对一个全栈老码农而言,经常在开发或者研发管理的时候遇到各种预测、决策、推断、分类、检测、排序等诸多问题。面对“你的代码还有 bug 么?”这样的挑战,一种理智的回答是,我们已经执...

黄宁波
01/31
0
0
Bayes Rule (贝叶斯公式)

贝叶斯(Bayes)分类器 一、贝叶斯是谁? 参考地址:http://www.ruanyifeng.com/blog/2011/08/bayesianinferencepart_one.html 贝叶斯(约1701-1761) Thomas Bayes,英国数学家。约1701年出生于...

片刻
2014/06/24
0
0
ML梳理01 | 贝叶斯分类算法的前世今生

关键字:贝叶斯、概率、贝叶斯分类算法、应用 本文收集整理的相关知识点大多来自网络,如有不恰当之处,还望指正。 什么是概率? 什么是概率这个问题似乎人人都觉得自己知道,却有很难说明白...

RookieDay
01/31
0
0

没有更多内容

加载失败,请刷新页面

加载更多

java框架学习日志-7(静态代理和JDK代理)

静态代理 我们平时去餐厅吃饭,不是直接告诉厨师做什么菜的,而是先告诉服务员点什么菜,然后由服务员传到给厨师,相当于服务员是厨师的代理,我们通过代理让厨师炒菜,这就是代理模式。代理...

白话
今天
22
0
Flink Window

1.Flink窗口 Window Assigner分配器。 窗口可以是时间驱动的(Time Window,例如:每30秒钟),也可以是数据驱动的(Count Window,例如:每一百个元素)。 一种经典的窗口分类可以分成: 翻...

满小茂
今天
17
0
my.ini

1

architect刘源源
今天
15
0
docker dns

There is a opensource application that solves this issue, it's called DNS Proxy Server It's a DNS server that solves containers hostnames, if could not found a hostname that mat......

kut
今天
15
0
寻找数学的广度——《这才是数学》读书笔记2700字

寻找数学的广度——《这才是数学》读书笔记2700字: 文|程哲。数学学习方式之广:国内外数学教育方面的专家,进行了很多种不同的数学学习方式尝试,如数学绘本、数学游戏、数学实验、数学步道...

原创小博客
今天
27
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部