HDFS的读写数据流文件过程介绍(四)
博客专区 > Hi徐敏 的博客 > 博客详情
HDFS的读写数据流文件过程介绍(四)
Hi徐敏 发表于3年前
HDFS的读写数据流文件过程介绍(四)
  • 发表于 3年前
  • 阅读 58
  • 收藏 1
  • 点赞 0
  • 评论 0

腾讯云 技术升级10大核心产品年终让利>>>   

摘要: hdfs读写文件流的过程介绍

HDFS文件的读取

文件读取的过程如下:

  1)解释一

客户端(client)用FileSystem的open()函数打开文件。

DistributedFileSystem用RPC调用元数据节点,得到文件的数据块信息。

对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。

DistributedFileSystem返回FSDataInputStream给客户端,用来读取数据。

客户端调用stream的read()函数开始读取数据。

DFSInputStream连接保存此文件第一个数据块的最近的数据节点。

Data从数据节点读到客户端(client)。

当此数据块读取完毕时,DFSInputStream关闭和此数据节点的连接,然后连接此文件下一个数据块的最近的数据节点。

当客户端读取完毕数据的时候,调用FSDataInputStream的close函数。

在读取数据的过程中,如果客户端在与数据节点通信出现错误,则尝试连接包含此数据块的下一个数据节点。

失败的数据节点将被记录,以后不再连接。

  2)解释二

使用HDFS提供的客户端开发库,向远程的Namenode发起RPC请求;

Namenode会视情况返回文件的部分或者全部block列表,对于每个block,Namenode都会返回有该block拷贝的datanode地址;

客户端开发库会选取离客户端最接近的datanode来读取block;

读取完当前block的数据后,关闭与当前的datanode连接,并为读取下一个block寻找最佳的datanode;

当读完列表的block后,且文件读取还没有结束,客户端开发库会继续向Namenode获取下一批的block列表。

读取完一个block都会进行checksum验证,如果读取datanode时出现错误,客户端会通知Namenode,然后再从下一个拥有该block拷贝的datanode继续读。

文件的写入

  写入文件的过程比读取较为复杂:

 

1)解释一
客户端调用create()来创建文件
DistributedFileSystem
RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件。
元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。
DistributedFileSystem
返回DFSOutputStream,客户端用于写数据。
客户端开始写入数据,DFSOutputStream将数据分成块,写入data queue
Data queue
Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3)。分配的数据节点放在一个pipeline里。
Data Streamer
将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。
DFSOutputStream
为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。
如果数据节点在写入的过程中失败:
关闭pipeline,将ack queue中的数据块放入data queue的开始。
当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。
失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。
元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。
当客户端结束写入数据,则调用streamclose函数。此操作将所有的数据块写入pipeline中的数据节点,并等待ack queue返回成功。最后通知元数据节点写入完毕。
  2)解释二
使用HDFS提供的客户端开发库,向远程的Namenode发起RPC请求;
Namenode
会检查要创建的文件是否已经存在,创建者是否有权限进行操作,成功则会为文件创建一个记录,否则会让客户端抛出异常;
当客户端开始写入文件的时候,开发库会将文件切分成多个packets,并在内部以"data queue"的形式管理这些packets,并向Namenode申请新的blocks,获取用来存储replicas的合适的datanodes列表,列表的大小根据在Namenode中对replication的设置而定。
开始以pipeline(管道)的形式将packet写入所有的replicas中。开发库把packet以流的方式写入第一个datanode,该datanode把该packet存储之后,再将其传递给在此pipeline中的下一个datanode,直到最后一个datanode,这种写数据的方式呈流水线的形式。
最后一个datanode成功存储之后会返回一个ack packet,在pipeline里传递至客户端,在客户端的开发库内部维护着"ack queue",成功收到datanode返回的ack packet后会从"ack queue"移除相应的packet
如果传输过程中,有某个datanode出现了故障,那么当前的pipeline会被关闭,出现故障的datanode会从当前的pipeline中移除,剩余的block会继续剩下的datanode中继续以pipeline的形式传输,同时Namenode会分配一个新的datanode,保持replicas设定的数量。


标签: hadoop HDFS
共有 人打赏支持
粉丝 116
博文 40
码字总数 67954
×
Hi徐敏
如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
* 金额(元)
¥1 ¥5 ¥10 ¥20 其他金额
打赏人
留言
* 支付类型
微信扫码支付
打赏金额:
已支付成功
打赏金额: