SELECT CONCAT( 'ALTER TABLE ', TABLE_NAME, ' CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;' ) FROM information_schema.TABLES WHERE TABLE_SCHEMA = 'DATABASE_NAME';...
读取数据库 import pandas as pd import pyodbc import sqlalchemy connection = pyodbc.connect('{driver_url}') engine = sqlalchemy.create_engine('{driver_url}') query_sql = 'select ...
常用数据操作 students01 = pd.read_excel('C:/students.xlsx', index_col='ID', sheet_name='page01') students02 = pd.read_excel('C:/students.xlsx', index_col='ID', sheet_name='page0...
使用jupyter 根据数据值,背景展示深浅不同 import pandas as pd import seaborn as sns color_map = sns.light_palette('green', as_cmap=True) students = pd.read_excel('C:/students.xls...
按照年度分析销售数据 import pandas as pd import numpy as np pd.options.display.max_columns = 1000 orders = pd.read_excel('C:/Orders.xlsx') orders['Year'] = pd.DatetimeIndex(orde...
拆分单元格内容 import pandas as pd employees = pd.read_excel('C:/employee.xlsx') df = employees['Full Name'].str.split(n=2, expand=True) employees['First Name'] = df[0] employee...
import pandas as pd def score_validation(row): try: assert 0<=row.Score<=100 except: print(f'Idx: {row.idx} StudentName: {row.Name} has an invalid score: {row.Score}') 索......
输出各列之间的相关性: import pandas as pd homes = pd.read_excel('D:/output.xlsx', index_col='idx') 输出各列之间的相关性 print(homes.corr()) dataFrame-merge/join: import pandas ...
import pandas as pd import matplotlib.pyplot as plt 将所有列的数据都显示出来 pd.options.display.max_columns = 1000 homes = pd.read_excel('D:/output.xlsx', index_col='Name') prin...
import pandas as pd import matplotlib.pyplot as plt users = pd.read_excel('D:/output.xlsx', index_col='idx') 绘制折线图 #users.plot(y=['M2018', 'M2019', 'M2020']) 绘制叠加区域图...
import pandas as pd import matplotlib.pyplot as plt users = pd.read_excel('D:/output.xlsx', index_col='Name') 饼图 users['M2018'].sort_values(ascending=True).plot.pie(fontsize=8...
import pandas as pd import matplotlib.pyplot as plt users = pd.read_excel('D:/output.xlsx', index_col='idx') users['Total'] = users['M2018'] + users['M2019'] + users['M2020'] us...
import pandas as pd import matplotlib.pyplot as plt students = pd.read_excel('D:/output.xlsx', index_col='idx') students.sort_values(by='M2019', inplace=True, ascending=True) pr...
import pandas as pd import matplotlib.pyplot as plt students = pd.read_excel('D:/output.xlsx', index_col='idx') students.sort_values(by='SinglePrice', inplace=True, ascending=Fa...
import pandas as pd def age_18_to_30(a): return 18 <= a < 30 def level_a(s): return 85 <= s <= 100 students = pd.read_excel('D:/output.xlsx', index_col='idx') 筛选出 年龄在18到3...
import pandas as pd books = pd.read_excel('D:/output.xlsx', index_col='idx') 按照SinglePrice排序 books.sort_values(by='SinglePrice', inplace=True, ascending=False) 按照TotalMone...
import pandas as pd def add_2(x): return x+2 books = pd.read_excel('D:/output.xlsx', index_col='idx') 列之间的数值计算1 books['TotalMoney'] = books['SinglePrice'] * 0.8 列之间的...
import pandas as pd from datetime import date, timedelta skiprows 跳过前面的多少行 usecols 读取excel中选中的列 index_col 使用作为索引列的列名 dtype 根据列名,设置列的数据类型 bo...
创建Series方式1 定义字典 d = {'x':100, 'y':200, 'z':300} 字典的键的集合 print(d.keys()) 字典的值的结合 print(d.values()) 使用键获取值 print(d['x']) 在pandas 中,行和列都可以使用...
没有更多内容
加载失败,请刷新页面
文章删除后无法恢复,确定删除此文章吗?
动弹删除后,数据将无法恢复
评论删除后,数据将无法恢复