朴素贝叶斯分类

原创
2014/04/21 17:39
阅读数 1.3K

朴素贝叶斯分类

条件概率:P(A|B) = P(AB)/P(B)

条件概率公式变形(贝叶斯定理):

P(A|B) = P(AB)/P(B)  => P(AB) = P(A|B)  * P(B)

P(B|A) = P(AB)/P(A)  => P(AB) = P(B|A)  * P(A)

=> P(A|B)  * P(B) = P(B|A)  * P(A)

训练数据如下

RID Age Income Student Credit_rating Class:buys_computer

1 <=30 High No Fair No

2 <=30 High No Excellent No

3 31…40 High No Fair Yes

4 >40 Medium No Fair Yes

5 >40 Low Yes Fair Yes

6 >40 Low Yes Excellent No

7 31…40 Low Yes Excellent Yes

8 <=30 Medium No Fair No

9 <=30 Low Yes Fair Yes

10 >40 Medium Yes Fair Yes

11 <=30 Medium Yes Excellent Yes

12 31…40 Medium No Excellent Yes

13 31…40 High Yes Fair Yes

14 >40 Medium No Excellent No


使用朴素贝叶斯分类预测类标号:训练数据如上,我们希

望使用朴素贝叶斯分类预测一个未知样本的类标号。数据样本用属性age,

income, student 和credit_rating 描述。类标号属性buys_computer 具有两个不同值(即,{yes,

no})。设C1 对应于类buys_computer = “yes”,而C2 对应于类buys_computer = “no”。我们希望

分类的未知样本为:

X = (age ="<= 30", income ="medium", student =" yes", credit _ rating =" fair").


我们需要最大化P(X |Ci )P(Ci ),i = 1,2。每个类的先验概率P(Ci )可以根据训练样本计算:

P(buys_computer = yes) = 9/14 = 0.643

P(buys_computer = no) = 5/14 = 0.357

为计算P(X |Ci ), i = 1,2。我们计算下面的条件概率(根据样本计算而出):

P(age = “<30” | buys_computer = “yes”) = 2/9 = 0.222

P(age = “<30” | buys_computer = “no”) = 3/5 = 0.600

P(income =“medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “no”) = 2/5 = 0.400

P(student = “yes” | buys_computer = “ yes”) = 6/9 = 0.667

P(student = “yes” | buys_computer = “no”) = 1/5 = 0.200

P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.400

使用以上概率,我们得到P(AB):

P(X | buys_computer = “yes”) = 0.222&times;0.444&times;0.667&times;0.667 = 0.044

P(X | buys_computer = “no”) = 0.600&times;0.400&times;0.200&times;0.400 = 0.019

P(X | buys_computer = “yes”) P(buys_computer = “yes”) = 0.044&times;0.643 = 0.028

P(X | buys_computer = “no”) P(buys_computer = “no”) = 0.019&times;0.357 = 0.007

因此,对于样本X,朴素贝叶斯分类预测buys_computer =” yes”



展开阅读全文
加载中

作者的其它热门文章

打赏
0
4 收藏
分享
打赏
0 评论
4 收藏
0
分享
返回顶部
顶部