文档章节

从01背包问题理解动态规划---初体验

r
 ranjiewen
发布于 2016/11/03 23:52
字数 1301
阅读 6
收藏 0
 

  01背包问题具体例子:假设现有容量10kg的背包,另外有3个物品,分别为a1,a2,a3。物品a1重量为3kg,价值为4;物品a2重量为4kg,价值为5;物品a3重量为5kg,价值为6。将哪些物品放入背包可使得背包中的总价值最大?

  这个问题有两种解法,动态规划和贪婪算法。本文仅涉及动态规划。

  先不套用动态规划的具体定义,试着想,碰见这种题目,怎么解决?

  首先想到的,一般是穷举法,一个一个地试,对于数目小的例子适用,如果容量增大,物品增多,这种方法就无用武之地了。

  其次,可以先把价值最大的物体放入,这已经是贪婪算法的雏形了。如果不添加某些特定条件,结果未必可行。

  最后,就是动态规划的思路了。先将原始问题一般化,欲求背包能够获得的总价值,即欲求前i个物体放入容量为m(kg)背包的最大价值c[i][m]——使用一个数组来存储最大价值,当m取10,i取3时,即原始问题了。而前i个物体放入容量为m(kg)的背包,又可以转化成前(i-1)个物体放入背包的问题。下面使用数学表达式描述它们两者之间的具体关系。

  表达式中各个符号的具体含义。

  w[i] :  第i个物体的重量;

  p[i] : 第i个物体的价值;

  c[i][m] : 前i个物体放入容量为m的背包的最大价值;

  c[i-1][m] : 前i-1个物体放入容量为m的背包的最大价值;

  c[i-1][m-w[i]] : 前i-1个物体放入容量为m-w[i]的背包的最大价值;

  由此可得:

      c[i][m]=max{c[i-1][m-w[i]]+pi , c[i-1][m]}(下图将给出更具体的解释)

 

 

    根据上式,对物体个数及背包重量进行递推,列出一个表格(见下表),表格来自(http://blog.csdn.net/fg2006/article/details/6766384?reload) ,当逐步推出表中每个值的大小,那个最大价值就求出来了。推导过程中,注意一点,最好逐行而非逐列开始推导,先从编号为1的那一行,推出所有c[1][m]的值,再推编号为2的那行c[2][m]的大小。这样便于理解。

    

    思路厘清后,开始编程序,C语言代码如下所示。

复制代码
#include <stdio.h>
int c[10][100]={0};

void knap(int m,int n){

    int i,j,w[10],p[10];
    for(i=1;i<n+1;i++)
        scanf("%d,%d",&w[i],&p[i]);
    for(j=0;j<m+1;j++)
        for(i=0;i<n+1;i++)
    {
        if(j<w[i])
        {
            c[i][j]=c[i-1][j];
            continue;
        }else if(c[i-1][j-w[i]]+p[i]>c[i-1][j])
            c[i][j]=c[i-1][j-w[i]]+p[i];
        else
            c[i][j]=c[i-1][j];
    }
    
}            


int main(){
    int m,n;int i,j;
    printf("input the max capacity and the number of the goods:\n");
    scanf("%d,%d",&m,&n);
    printf("Input each one(weight and value):\n");
    knap(m,n);
    printf("\n");
   for(i=0;i<=n;i++)
        for(j=0;j<=m;j++)
       {
     printf("%4d",c[i][j]);
    if(m==j) printf("\n");
    }
}
代码中,红色字体部分是自己写的,其余的参照了这篇博客http://blog.sina.com.cn/s/blog_6dcd26b301013810.html
复制代码

   如果你很轻松地就突破了01背包,甚至很轻松地就理解了动态规划,那么继续前进,做一下这道题目(http://acm.uestc.edu.cn/problem.php?pid=1012)。很好玩的。

//输入描述:
//输入的第 1 行,为两个正整数,用一个空格隔开:N m
//(其中 N ( <32000 )表示总钱数, m ( <60 )为希望购买物品的个数。)
//
//从第 2 行到第 m + 1 行,第 j 行给出了编号为 j - 1 的物品的基本数据,每行有 3 个非负整数 v p q
//
//(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~5 ), q 表示该物品是主件还是附件。如果 q = 0 ,
//                表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)
//
//输出描述 :
//输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值( <200000 )。


//动态规划,(0,1)背包问题
#include<iostream>
using namespace std;

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct InputBuf
{
    int price;
    int weight;
    int type;
};

struct InputBuf inputBuf[60];
int sum_money = 0;
int sum_num = 0;

int countMaxvalue(int index, int money, int f)
{
    int a = 0, b = 0;
    if (index >= sum_num) return 0;
    if (inputBuf[index].type == 0)  //主件
    {
        if (money >= inputBuf[index].price)
        {
            a = countMaxvalue(index + 1, money - inputBuf[index].price, 1) + inputBuf[index].price * inputBuf[index].weight;  //买第index件物品的附件
            b = countMaxvalue(index + 1, money, 0);    //买主件
            return a > b ? a : b;
        }
        else
            return countMaxvalue(index + 1, money, 0);
    }
    else if ((inputBuf[index].type != 0) && (f == 1))  //附件,且主件必须买
    {
        if (money >= inputBuf[index].price)
        {
            a = countMaxvalue(index + 1, money - inputBuf[index].price, f) + inputBuf[index].price * inputBuf[index].weight;
            b = countMaxvalue(index + 1, money, f);
            return a > b ? a : b;
        }
    }
    else
    {
        return countMaxvalue(index + 1, money, f);
    }
    return 0;
}



int main(void)
{
    int i = 0;
    scanf("%d %d", &sum_money, &sum_num);
    for (i = 0; i < sum_num; i++)
    {
        scanf("%d %d %d", &inputBuf[i].price, &inputBuf[i].weight, &inputBuf[i].type);
    }
    printf("%d", countMaxvalue(0, sum_money, 1));
    return 0;
}

 

本文转载自:http://www.cnblogs.com/ranjiewen/p/5901269.html

r
粉丝 1
博文 203
码字总数 28
作品 0
武汉
程序员
私信 提问
前端与算法-动态规划之01背包问题浅析与实现

去年因为工作中的某个应用场景,需要使用到动态规划,为此花了些时间啃了啃背包算法 为啥去年的东西,今年才写粗来,也许大概是懒吧 动态规划 Dynamic Programming 先简单说下什么是动态规划...

小黎也
2018/07/31
0
0
算法:Dynamic Programing

一、动态规划干嘛的 二、可以解决哪些问题 动态规划一般可分为:线性动规,区域动规,树形动规,背包动规四类。 线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等; 区域动规:石子...

猫咪要感冒
2016/10/09
1
0
POJ 1014 Dividing 解答

题目详见http://poj.org/problem?id=1014 看到这道题第一反应便知道它是一道类似背包问题的题, 解法我自然而然得从背包问题的解法入手, 网上查了查, 背包问题的基本题型是01背包, 即每种物品...

fjie
2014/01/12
0
0
动态规划 &

一、 动态规划(Dp问题):解决问题的关键点 1) 递推公式:(最有子结构) 2) 数据的初始化 用例分析: a. 01 背包的问题(Knapsack Problem) 定义: 一个背包的容量V; 存在N个物品:w[i...

Playboy002
2015/07/17
42
0
动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程 f[i,j]...

暖冰
2016/03/31
67
0

没有更多内容

加载失败,请刷新页面

加载更多

在Javascript中Eval函数的使用

【eval()函数】 JavaScript有许多小窍门来使编程更加容易。 其中之一就是eval()函数,这个函数可以把一个字符串当作一个JavaScript表达式一样去执行它。 举个小例子: var the_unevaled_ans...

花漾年华
27分钟前
3
0
[日更-2019.5.22、23] Android 系统的分区和文件系统(二)--Android 文件系统中的文件

声明 Android系统中有很多分区,每个分区内的文件系统一般都不同的,使用ADB进入系统/目录下可发现挂载这很多的目录,不同的目录中可来自不同的分区及文件系统; 那么,就来分下这些目录里面...

小馬佩德罗
31分钟前
2
0
数组操作相关算法

/*数组的相关的算法操作:1、在数组中找最大值/最小值*/class Test11_FindMax{public static void main(String[] args){int[] array = {4,2,6,8,1};//在数组中找最大...

architect刘源源
今天
4
0
okhttp3 以上版本在安卓9.0无法请求数据的解决方案

应用官方的说明:在 Android 6.0 中,我们取消了对 Apache HTTP 客户端的支持。 从 Android 9 开始,默认情况下该内容库已从 bootclasspath 中移除且不可用于应用。且Android P 限制了明文流量...

chenhongjiang
今天
12
0
简单示例:NodeJs连接mysql数据库

开篇引用网上的说法: 简单的说 Node.js 就是运行在服务端的 JavaScript。Node.js 是一个基于Chrome JavaScript 运行时建立的一个平台。Node.js是一个事件驱动I/O服务端JavaScript环境,基于...

李朝强
今天
8
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部