文档章节

Weka开发[14]-AdaBoost源代码介绍

pior
 pior
发布于 2015/10/20 20:28
字数 686
阅读 140
收藏 1

这一次讲的是Ensemble的东西,一位读者希望我讲一下Adaboost的内容,这种Ensemble看起来的确比较吓人,推荐一篇论文:Ensemble Based Systems in Decision Making. 在这里所有理论的东西我就不介绍了。

与以往一样,先看buildClassifier函数(我在函数中将不重要的代码全部去掉):

super.buildClassifier(data);

if ((!m_UseResampling)&& (m_Classifier instanceof WeightedInstancesHandler)) {

       buildClassifierWithWeights(data);

} else {

       buildClassifierUsingResampling(data);

}

Adaboost类继承自RandomizableIteratedSingleClassifierEnhancer类,再看一下这个类的buildClasssifier函数内容:

m_Classifiers = Classifier.makeCopies(m_Classifier, m_NumIterations);

这句话是产生m_NumIterations个基分类器。

接下来的是判断是否用Resampling方法,这个先不讲,直接看下面的函数,先讲buildClassifierWithWeights这个函数,代码太长了,我分开讲:

// Select instances to train the classifier on

if (m_WeightThreshold < 100) {

       trainData = selectWeightQuantile(training,(double) m_WeightThreshold / 100);

} else {

        trainData = new Instances(training, 0, numInstances);

}

最上面那个循环m_Classifiers.length次的循环没有粘,这一段话也没什么意思,就是说先多少样本训练,默认的是100,不是100的时候用selectWeightQuantile函数,这个函数是根据样本权重的比例来选择的,它先根据权重对样本进行排序,再选择样本。如果是默认值,那么当然是选择全部样本。

// Build the classifier

if (m_Classifiers[m_NumIterationsPerformed] instanceof Randomizable)

        ((Randomizable) m_Classifiers[m_NumIterationsPerformed])

              .setSeed(randomInstance.nextInt());

m_Classifiers[m_NumIterationsPerformed].buildClassifier(trainData);

    有的分类器是一个Randomizable实例,那么就给它设置种子,然后训练一个分类器。

    // Evaluate the classifier

    evaluation = new Evaluation(data);        

    evaluation.evaluateModel(m_Classifiers[m_NumIterationsPerformed],training);

    epsilon = evaluation.errorRate();

 

    // Stop if error too small or error too big and ignore this model

    if (Utils.grOrEq(epsilon, 0.5) || Utils.eq(epsilon, 0)) {

       if (m_NumIterationsPerformed == 0) {

           // If we're the first we have to to use it

           m_NumIterationsPerformed = 1;

        }

       break;

    }

    这一段,看过论文的人应该比较清楚是什么意思,这里也就不解释了。

    // Determine the weight to assign to this model

    m_Betas[m_NumIterationsPerformed] = Math.log((1 - epsilon)/ epsilon);

    reweight = (1 - epsilon) / epsilon;

 

    // Update instance weights

    setWeights(training, reweight);

    第一行代码对应我刚才讲的论文的图5中的公式15,第二句对应公式13,最后一句对应公式14,下面详细讲一下:

    oldSumOfWeights = training.sumOfWeights();

    Enumeration enu = training.enumerateInstances();

    while (enu.hasMoreElements()) {

       Instance instance = (Instance) enu.nextElement();

       if (!Utils.eq(m_Classifiers[m_NumIterationsPerformed].

           classifyInstance(instance), instance.classValue()))

           instance.setWeight(instance.weight() * reweight);

    }

 

    // Renormalize weights

    newSumOfWeights = training.sumOfWeights();

    enu = training.enumerateInstances();

    while (enu.hasMoreElements()) {

       Instance instance = (Instance) enu.nextElement();

       instance.setWeight(instance.weight() * oldSumOfWeights / newSumOfWeights);

    }

这段代码也是adaboost的核心了,这个函数就是重新计算每个样本的权重,第一个if是判断是否分类错误,如果分类错误,就在原来的权重上乘上reweight(这地方我还有点不清楚,原论文上应该是分类正确了乘上reweight,公式14)。

底下的那部分代码就是重新归一化权重,没什么特别的。至于另一个函数buildClassifierUsingResampling,想想还是不讲了,与这个函数比较也没什么特别的地方。


本文转载自:

共有 人打赏支持
pior
粉丝 25
博文 151
码字总数 22496
作品 0
济南
高级程序员
Weka 中的算法名说明

数据输入和输出 WOW():查看Weka函数的参数。 Weka_control():设置Weka函数的参数。 read.arff():读Weka Attribute-Relation File Format (ARFF)格式的数据。 write.arff:将数据写入Weka ...

pior
2015/10/17
304
0
Weka manual 3.6翻译: 1.1 简介

第一章 Weka命令行入门 1.1简介 在最初的实验,Weka所包含的图形用户界面是相当足够,若深入使用则建议使用命令行界面,因为它提供了一些功能(这些功能在图形用户界面下不可用) - 并使用少...

Honghe
2012/11/24
0
0
Weka开发[5]-半监督算法

这次介绍一个我现在正在做的半监督算法,因为我只是提出一个框架,半监督算法只是一个工具,可是为了找这个工具也让我花了不少功夫。现在介绍的暂时不是Weka的一部分,但开发者是waikato大学...

pior
2015/10/17
46
0
Weka 开发[1]-Instances类

言归正传,开始介绍Weka,先google一下,把Weka软件下载下来,在Weka的目录中有一个weka.jar的包。 把包添加到工程中后,就可以调用weka中的函数了。 再介绍一点weka的基本知识,在weka的目录...

pior
2015/10/17
217
0
Weka开发[6]-参数设置

这一次介绍的非常简单,会用传命令行参数的人就不用浪费时间看这一篇了,这一篇介绍weka中一些类参数传递的问题。 首先要传递参数当然要知道参数有哪些,有什么作用,要知道这些,建议用Wek...

pior
2015/10/17
79
0

没有更多内容

加载失败,请刷新页面

加载更多

一次由HandlerInterceptor进行的深入思考

HandlerInterceptor 是SpringFramework为我们提供的拦截器,一般我们可以用来鉴权或者日志记录等。 它是一个interface,主要方法有: /** * Intercept the execution of a handler. Called...

kipeng300
34分钟前
1
0
cmd中查询mysql表出现中文乱码

问题:在pycharm中正常的fetchall拉取数据,能够正常显示,而在cmd中直接select却出现中文乱码。 解决思路:右键查看cmd命令窗口属性得到,cmd窗口默认编码是gbk(如下图所示),而设置的mys...

fang_faye
今天
2
0
centOS 安装Python3与python2并存

centOS 安装Python3与python2并存 如果本机安装了python2,尽量不要管他,使用python3运行python脚本就好,因为可能有程序依赖目前的python2环境, 比如yum!!!!! 不要动现有的python2环...

MedivhXu
今天
2
0
Spring JdbcTemplate模板模式与回调结合分析

在看Spring的JdbcTemplate的时候,看到其将模板模式和回调模式结合使用的实现,可以精妙的解决很多的问题。详见Spring中涉及的设计模式总结中的关于模板模式和回调模式结合的具分析,本文利用...

宸明
今天
1
0
docker update:更新一个或多个容器的配置

更新容器的配置 docker update:更新一个或多个容器的配置。 具体内容请访问:https://docs.docker.com/engine/reference/commandline/update/#options 语法:docker update [OPTIONS] CONTA...

lwenhao
今天
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部