Weka开发[3]-Evaluation类
博客专区 > pior 的博客 > 博客详情
Weka开发[3]-Evaluation类
pior 发表于2年前
Weka开发[3]-Evaluation类
  • 发表于 2年前
  • 阅读 219
  • 收藏 1
  • 点赞 0
  • 评论 0

腾讯云 新注册用户 域名抢购1元起>>>   

      上一次最后的结果就是一个分类的值,可能让大家大失所望,这一次会给大家一个比较完美的答案,这就是Evaluation类,这次只讲一下最简单的用法,首先初始化一个Evaluation对象,Evaluation类没有无参的构造函数,一般用Instances对象作为构造函数的参数。

       如果没有分开训练集和测试集,可以使用Cross Validation方法,EvaluationcrossValidateModel方法的四个参数分别为,第一个是分类器,第二个是在某个数据集上评价的数据集,第三个参数是交叉检验的次数(10是比较常见的),第四个是一个随机数对象。

       如果有训练集和测试集,可以使用Evaluation 类中的evaluateModel方法,方法中的参数为:第一个为一个训练过的分类器,第二个参数是在某个数据集上评价的数据集。例中我为了简单用训练集再次做为测试集,希望大家不会糊涂。

       提醒大家一下,使用crossValidateModel时,分类器不需要先训练,这其实也应该是常识了。

       Evaluation中提供了多种输出方法,大家如果用过weka软件,会发现方法输出结果与软件中某个显示结果的是对应的。例中的三个方法toClassDetailsStringtoSummaryStringtoMatrixString比较常用。

package instanceTest;
 
import java.io.FileReader;
import java.util.Random;
 
import weka.classifiers.Evaluation;
import weka.classifiers.trees.J48;
import weka.core.Instances;
 
public class EvaluationTest{
    private Instances m_instances = null;
    
    public void getFileInstances( String fileName ) throws Exception {
        FileReader frData = new FileReader( fileName );
        m_instances = new Instances( frData );
        
        m_instances.setClassIndex( m_instances.numAttributes() - 1 );
    }
    
    public void crossValidation() throws Exception {
        J48 classifier = new J48();
        //NaiveBayes classifier = new NaiveBayes();
        //SMO classifier = new SMO();
        
        Evaluation eval = new Evaluation( m_instances );
        eval.crossValidateModel( classifier, m_instances, 10, new Random(1));
        System.out.println(eval.toClassDetailsString());
        System.out.println(eval.toSummaryString());
        System.out.println(eval.toMatrixString());
    }
    
    public void evaluateTestData() throws Exception {
        J48 classifier = new J48();
        //NaiveBayes classifier = new NaiveBayes();
        //SMO classifier = new SMO();
        
        classifier.buildClassifier( m_instances );
        
        Evaluation eval = new Evaluation( m_instances );
        eval.evaluateModel( classifier, m_instances );
        System.out.println(eval.toClassDetailsString());
        System.out.println(eval.toSummaryString());
        System.out.println(eval.toMatrixString());
    }
    
    public static void main( String[] args ) throws Exception {
        EvaluationTest etest = new EvaluationTest();
        etest.getFileInstances( "F://Program Files//Weka-3-4//data//contact-lenses.arff");
        etest.crossValidation();
        System.out.println( "***********************************\n\n" );
        etest.evaluateTestData();
    }
}


共有 人打赏支持
粉丝 25
博文 151
码字总数 22496
×
pior
如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
* 金额(元)
¥1 ¥5 ¥10 ¥20 其他金额
打赏人
留言
* 支付类型
微信扫码支付
打赏金额:
已支付成功
打赏金额: