文档章节

ConcurrentHashMap原理分析

phacks
 phacks
发布于 2015/08/19 08:29
字数 1971
阅读 23
收藏 0

「深度学习福利」大神带你进阶工程师,立即查看>>>

集合是编程中最常用的数据结构。而谈到并发,几乎总是离不开集合这类高级数据结构的支持。比如两个线程需要同时访问一个中间临界区(Queue),比如常会用缓存作为外部文件的副本(HashMap)。这篇文章主要分析jdk1.5的3种并发集合类型(concurrent,copyonright,queue)中的ConcurrentHashMap,让我们从原理上细致的了解它们,能够让我们在深度项目开发中获益非浅。

    在tiger之前,我们使用得最多的数据结构之一就是HashMap和Hashtable。大家都知道,HashMap中未进行同步考虑,而Hashtable则使用了synchronized,带来的直接影响就是可选择,我们可以在单线程时使用HashMap提高效率,而多线程时用Hashtable来保证安全。

    当我们享受着jdk带来的便利时同样承受它带来的不幸恶果。通过分析Hashtable就知道,synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,安全的背后是巨大的浪费,慧眼独具的Doug Lee立马拿出了解决方案----ConcurrentHashMap。

    ConcurrentHashMap和Hashtable主要区别就是围绕着锁的粒度以及如何锁。如图


左边便是Hashtable的实现方式---锁整个hash表;而右边则是ConcurrentHashMap的实现方式---锁桶(或段)。ConcurrentHashMap将hash表分为16个桶(默认值),诸如get,put,remove等常用操作只锁当前需要用到的桶。试想,原来只能一个线程进入,现在却能同时16个写线程进入(写线程才需要锁定,而读线程几乎不受限制,之后会提到),并发性的提升是显而易见的。

    更令人惊讶的是ConcurrentHashMap的读取并发,因为在读取的大多数时候都没有用到锁定,所以读取操作几乎是完全的并发操作,而写操作锁定的粒度又非常细,比起之前又更加快速(这一点在桶更多时表现得更明显些)。只有在求size等操作时才需要锁定整个表。而在迭代时,ConcurrentHashMap使用了不同于传统集合的快速失败迭代器(见之前的文章《JAVA API备忘---集合》)的另一种迭代方式,我们称为弱一致迭代器。在这种迭代方式中,当iterator被创建后集合再发生改变就不再是抛出ConcurrentModificationException,取而代之的是在改变时new新的数据从而不影响原有的数据,iterator完成后再将头指针替换为新的数据,这样iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变,更重要的,这保证了多个线程并发执行的连续性和扩展性,是性能提升的关键。

    接下来,让我们看看ConcurrentHashMap中的几个重要方法,心里知道了实现机制后,使用起来就更加有底气。

    ConcurrentHashMap中主要实体类就是三个:ConcurrentHashMap(整个Hash表),Segment(桶),HashEntry(节点),对应上面的图可以看出之间的关系。

    get方法(请注意,这里分析的方法都是针对桶的,因为ConcurrentHashMap的最大改进就是将粒度细化到了桶上),首先判断了当前桶的数据个数是否为0,为0自然不可能get到什么,只有返回null,这样做避免了不必要的搜索,也用最小的代价避免出错。然后得到头节点(方法将在下面涉及)之后就是根据hash和key逐个判断是否是指定的值,如果是并且值非空就说明找到了,直接返回;程序非常简单,但有一个令人困惑的地方,这句return readValueUnderLock(e)到底是用来干什么的呢?研究它的代码,在锁定之后返回一个值。但这里已经有一句V v = e.value得到了节点的值,这句return readValueUnderLock(e)是否多此一举?事实上,这里完全是为了并发考虑的,这里当v为空时,可能是一个线程正在改变节点,而之前的get操作都未进行锁定,根据bernstein条件,读后写或写后读都会引起数据的不一致,所以这里要对这个e重新上锁再读一遍,以保证得到的是正确值,这里不得不佩服Doug Lee思维的严密性。整个get操作只有很少的情况会锁定,相对于之前的Hashtable,并发是不可避免的啊!

 

V get(Object key, int hash) {
            if (count != 0) { // read-volatile
                HashEntry e = getFirst(hash);
                while (e != null) {
                    if (e.hash == hash && key.equals(e.key)) {
                        V v = e.value;
                        if (v != null)
                            return v;
                        return readValueUnderLock(e); // recheck
                    }
                    e = e.next;
                }
            }
            return null;
        }



  V readValueUnderLock(HashEntry e) {
            lock();
            try {
                return e.value;
            } finally {
                unlock();
            }
        }

 put操作一上来就锁定了整个segment,这当然是为了并发的安全,修改数据是不能并发进行的,必须得有个判断是否超限的语句以确保容量不足时能够rehash,而比较难懂的是这句int index = hash & (tab.length - 1),原来segment里面才是真正的hashtable,即每个segment是一个传统意义上的hashtable,如上图,从两者的结构就可以看出区别,这里就是找出需要的entry在table的哪一个位置,之后得到的entry就是这个链的第一个节点,如果e!=null,说明找到了,这是就要替换节点的值(onlyIfAbsent == false),否则,我们需要new一个entry,它的后继是first,而让tab[index]指向它,什么意思呢?实际上就是将这个新entry插入到链头,剩下的就非常容易理解了。

V put(K key, int hash, V value, boolean onlyIfAbsent) {
            lock();
            try {
                int c = count;
                if (c++ > threshold) // ensure capacity
                    rehash();
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = (HashEntry) tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                V oldValue;
                if (e != null) {
                    oldValue = e.value;
                    if (!onlyIfAbsent)
                        e.value = value;
                }
                else {
                    oldValue = null;
                    ++modCount;
                    tab[index] = new HashEntry(key, hash, first, value);
                    count = c; // write-volatile
                }
                return oldValue;
            } finally {
                unlock();
            }
        }

 remove操作非常类似put,但要注意一点区别,中间那个for循环是做什么用的呢?(*号标记)从代码来看,就是将定位之后的所有entry克隆并拼回前面去,但有必要吗?每次删除一个元素就要将那之前的元素克隆一遍?这点其实是由entry的不变性来决定的,仔细观察entry定义,发现除了value,其他所有属性都是用final来修饰的,这意味着在第一次设置了next域之后便不能再改变它,取而代之的是将它之前的节点全都克隆一次。至于entry为什么要设置为不变性,这跟不变性的访问不需要同步从而节省时间有关,关于不变性的更多内容,请参阅之前的文章《线程高级---线程的一些编程技巧》

V remove(Object key, int hash, Object value) {
            lock();
            try {
                int c = count - 1;
                HashEntry[] tab = table;
                int index = hash & (tab.length - 1);
                HashEntry first = (HashEntry)tab[index];
                HashEntry e = first;
                while (e != null && (e.hash != hash || !key.equals(e.key)))
                    e = e.next;

                V oldValue = null;
                if (e != null) {
                    V v = e.value;
                    if (value == null || value.equals(v)) {
                        oldValue = v;
                        // All entries following removed node can stay
                        // in list, but all preceding ones need to be
                        // cloned.
                        ++modCount;
                        HashEntry newFirst = e.next;
                    *    for (HashEntry p = first; p != e; p = p.next)
                    *        newFirst = new HashEntry(p.key, p.hash, 
                                                          newFirst, p.value);
                        tab[index] = newFirst;
                        count = c; // write-volatile
                    }
                }
                return oldValue;
            } finally {
                unlock();
            }
        }


static final class HashEntry {
        final K key;
        final int hash;
        volatile V value;
        final HashEntry next;

        HashEntry(K key, int hash, HashEntry next, V value) {
            this.key = key;
            this.hash = hash;
            this.next = next;
            this.value = value;
        }
    }

 以上,分析了几个最简单的操作,限于篇幅,这里不再对rehash或iterator等实现进行讨论,有兴趣可以参考src。

    接下来实际上还有一个疑问,ConcurrentHashMap跟HashMap相比较性能到底如何。这在Brian Goetz的文章中已经有过评测http://www.ibm.com/developerworks/cn/java/j-jtp07233/




phacks
粉丝 6
博文 101
码字总数 107649
作品 0
高级程序员
私信 提问
加载中
请先登录后再评论。
Flappy Bird(安卓版)逆向分析(一)

更改每过一关的增长分数 反编译的步骤就不介绍了,我们直接来看反编译得到的文件夹 方法1:在smali目录下,我们看到org/andengine/,可以知晓游戏是由andengine引擎开发的。打开/res/raw/at...

enimey
2014/03/04
6.2K
18
Swift百万线程攻破单例(Singleton)模式

一、不安全的单例实现 在上一篇文章我们给出了单例的设计模式,直接给出了线程安全的实现方法。单例的实现有多种方法,如下面: class SwiftSingleton { } 这段代码的实现,在shared中进行条...

一叶博客
2014/06/20
3.5K
16
Nutch学习笔记4-Nutch 1.7 的 索引篇 ElasticSearch

上一篇讲解了爬取和分析的流程,很重要的收获就是: 解析过程中,会根据页面的ContentType获得一系列的注册解析器, 依次调用每个解析器,当其中一个解析成功后就返回,否则继续执行下一个解...

强子哥哥
2014/06/26
712
0
实时分析系统--istatd

istatd是IMVU公司工程师开发的一款优秀的实时分析系统,能够有效地收集,存储和搜索各种分析指标,类似cacti,Graphite,Zabbix等系统。实际上,istatd修改了Graphite的存储后端,重新实现了...

匿名
2013/02/07
3.1K
1
日志分析平台 - Kibana

Kibana 是一个为 Logstash 和 ElasticSearch 提供的日志分析的 Web 接口。可使用它对日志进行高效的搜索、可视化、分析等各种操作。 环境要求: ruby >= 1.8.7 (probably?) bundler logstash...

匿名
2013/02/13
11.6W
1

没有更多内容

加载失败,请刷新页面

加载更多

EasyDL入驻社区果蔬店 离线识别秒级智能结算

传统收银方式高成本低效率 急需转型 500米商圈概念被越来越多的企业关注,在中国,一个社区就有可能成为一个商圈,蕴藏着巨大的商机。而在社区中,果蔬作为人们每天都要采购的高频消费商品,...

百度智能云
06/10
0
0
rabbitmq集群环境安装配置

一、主机清单 2台机器同时执行下面安装步骤 10.0.0.216 shiguang-rabbitmq-01 10.0.0.223 shiguang-rabbitmq-02 注意:请将上面内容加入2台机器 /etc/hosts (集群环境必须要加) 1、安装erlan...

caozhangming
2019/08/09
0
0
【rabbitmq-Php】-发布Publish 与订阅Subscribe

发布/订阅,使用扇型交换机(fanout) composer.json ### composer.json { "require": { "php-amqplib/php-amqplib": ">=2.9.0" }} 发布端(Publish) /** * rabbitmq......

DEPAKIN
22分钟前
13
0
如何在PHP中进行重定向? - How do I make a redirect in PHP?

问题: Is it possible to redirect a user to a different page through the use of PHP? 是否可以通过使用PHP将用户重定向到其他页面? Say the user goes to www.example.com/page.php an......

法国红酒甜
32分钟前
9
0
一周面试了 30 人,通过 2 人,面试面到我心态爆炸…

Java技术栈 www.javastack.cn 打开网站看更多优质文章 因技术团队人员调整及项目组扩编,需要招几个 Java 程序员,3~5年左右,领导要求的是能力要比现有的大部分技术人员要强,并且宁缺勿滥...

Java技术栈
05/24
0
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部