隆重介绍 OpenVINO™ 2024.0: 为开发者提供更强性能和扩展支持

原创
03/08 14:07
阅读数 199

点击蓝字

关注我们,让开发变得更有趣

作者 | Yury Gorbachev 英特尔院士 OpenVINO™ 产品架构师

翻译 | 武卓 英特尔 AI 软件布道师

排版 | 李擎


Hello, OpenVINO™ 2024.0

欢迎来到 OpenVINO™ 2024.0,我们很高兴在这里推出一系列增强功能,旨在在快速发展的人工智能领域为开发者赋能!此版本通过动态量化、改进优化 GPU 以及对混合专家架构的支持,增强了大语言模型(LLM)的性能。OpenVINO™ 2024.0 使开发者能够有效利用人工智能加速,并对来自社区的持续贡献表示感谢。


OpenVINO™


大语言模型推理的提升



大语言模型(LLM)没有消失的迹象,模型和使用用例不断涌现。我们将继续我们的使命,以便加速模型,并使这些模型的推理更加经济实惠。



性能和准确性的提升


在本版本中,我们一直致力于提高 LLM 的开箱即用性能,并对运行时和工具进行了一些重要更改。


首先,我们介绍了 CPU 平台的动态量化和缓存压缩机制。KV 缓存压缩功能使我们能够更高效地生成大序列。动态量化通常会提高模型其它部分(嵌入映射和前馈网络)的计算和内存消耗。

对于 GPU 平台,我们还通过在内核和整个堆栈中引入优化来改进生成特性。我们还实现了更高效的缓存处理,这有助于使用波束搜索生成。

其次,虽然性能一直是一个讨论的话题,但准确性也至关重要。我们提高了 NNCF 中权重压缩算法的准确性。我们介绍了使用数据集的统计数据压缩权重的能力,并介绍了 AWQ 算法的实现,以进一步提高准确性。此外,通过我们与 Hugging Face Optimum Intel 的集成,您现在可以直接通过 Transformers API 压缩模型,如下所示:


(此处的代码来源:

https://github.com/huggingface/optimum-intel/pull/538)


注意:使用设置为 True 的 load_in_4bit 选项,并在对 from_pretrained 方法的调用中传递 quantiation_config 权限,这将为您完成所有压缩工作。更重要的是,我们已经为大多数热门的模型添加了量化配置,其中包括 Llama2、StableLM、ChatGLM 和 QWEN 等模型;因此,对于这些模型,您根本不需要传递 config 来获得4位压缩。


想了解关于我们的算法质量的更多信息,您可以查询OpenVINO™ 文档:https://docs.openvino.ai/nightly/weight_compression.html

或者 GitHub上的NNCF 文档:https://github.com/openvinotoolkit/nncf/blob/a917efd684c2febd05032a8f2a077595fb73481a/docs/compression_algorithms/CompressWeights.md#evaluation-results


支持混合专家(MoE)架构


 混合专家(MoE)代表了下一个主要的体系架构演变,它为 LLM 带来了更好的准确性和性能。它从 Mixtral 开始,并迅速发展到更多的模型和框架,允许从现有模型创建基于 MoE 的模型。在整个2024.0版本中,我们一直致力于启用这些体系结构并提高性能。我们不仅对这些模型进行了有效的转换,而且还更改了一些内部结构,以更好地处理运行时内专家的动态选择。


我们正在对 Hugging Face Optimum-Intel 进行升级,以使这些模型的转换是透明的。


OpenVINO™


对新平台的变化以及现有平台的增强


 Intel NPU 更广泛的接入


随着 Intel®Core™Ultra 的发布,我们的 NPU 加速器终于跟广大的开发者见面了。从软件和硬件的角度来看,这是一款不断发展的产品,我们对它所能实现的功能感到兴奋。您可能已经看到了一些在 NPU 上运行的 OpenVINO™ Notebooks 的演示

OpenVINO™ notebooks running on NPU:

https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/230-yolov8-optimization


在本版本中,当您通过我们最热门的分发渠道 PyPI 安装 OpenVINO™ 时,我们将提供 NPU 支持。有几点需要注意:

  • NPU 要求在系统中安装驱动程序,因此如果您打算使用它,请确保遵循此简短指南:

    https://docs.openvino.ai/nightly/openvino_docs_install_guides_configurations_for_intel_npu.html

  • NPU 目前不包括在自动设备选择逻辑中(https://docs.openvino.ai/nightly/openvino_docs_OV_UG_supported_plugins_AUTO.html),因此,如果您计划在NPU上运行您的模型,请确保您明确指定设备名称(例如NPU),如下所示:

compiled_model = core.compile_model(model=model, device_name="NPU")


改进对 ARM CPU 的支持


线程是我们在 ARM 平台上还未有效实现的事情之一,这拖慢了我们的性能。我们与 oneTBB 团队(我们默认的线程引擎提供商)合作,改变了对 ARM 的支持,并显著提高了我们的性能。同时,在对某些操作的精度进行了一些研究后,我们在 ARM CPU 上默认启用了 fp16 作为推理精度。

总的来说,这意味着 ARM CPU 的性能更高,也意味着 OpenVINO Streams 功能的实现(https://docs.openvino.ai/nightly/openvino_docs_deployment_optimization_guide_tput_advanced.html#openvino-streams),该功能允许在多核平台上获得更高的吞吐量。


OpenVINO™


删除一些遗留项



2024.0 是我们的下一个主要版本,传统上这是我们从工具套件中删除过时组件的时候。 


2年前,我们大幅度改变了 API 以跟上深度学习领域的发展。但为了最大限度地减少对使用OpenVINO™的现有开发者和产品的影响,我们也支持 API 1.0。从那以后发生了很多变化,我们现在正在完全删除旧的 API。更重要的是,我们还删除了标记为弃用的工具。这包括:


  • 训练后量化工具,也称为POT

  • 准确性检查框架

  • 部署管理器


这些工具是 openvino-dev 包的一部分,这个包已经有一段时间没有强制使用了。我们将为那些继续使用我们的离线模型转换工具model Optimizer的用户保留它。


如果您无法迁移到新的API,那么您很有可能继续使用我们的一个长期支持版本,例如2023.3。


OpenVINO™


新的及修改过的 Notebooks


我们将继续展示人工智能领域最重要的更新,以及如何利用OpenVINO™来加速这些场景。以下是我们一直在做的工作:


  • Mobile language assistant with MobileVLM

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/279-mobilevlm-language-assistant

  • Depth estimation with DepthAnything

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/280-depth-anything

  • Multimodal Large Language Models (MLLM) Kosmos-2

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/281-kosmos2-multimodal-large-language-model

  • Zero-shot Image Classification with SigLIP

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/282-siglip-zero-shot-image-classification

  • Personalized image generation with PhotMaker

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/283-photo-maker

  • Voice tone cloning with OpenVoice

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/284-openvoice

  • Line-level text detection with Surya

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/285-surya-line-level-text-detection

  • Zero-shot Identity-Preserving Generation with InstantID

    https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/286-instant-id

  • LLM chatbot 和 LLM RAG pipeline已通过新模型的集成进行了更新:minicpm-2b-dpo、gemma-7b-it、qwen1.5-7b-chat、baichuan2-7b-chat

    https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/254-llm-chatbot/254-llm-chatbot.ipynb

    https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/254-llm-chatbot/254-rag-chatbot.ipynb

OpenVINO™


感谢您,我们的开发者和贡献者!       


在 OpenVINO™ 的历史上,我们看到了许多激动人心的项目!我们决定列出一份使用OpenVINO™ 的绝妙项目列表

(https://github.com/openvinotoolkit/awesome-openvino),它还在继续快速增长着!为您的项目创建一个拉取请求,使用您项目的 “mentioned in Awesome” 徽章,并与我们分享您的经验!


我们的开发人员基数正在增长,我们感谢社区正在做出的所有改变和改进。令人惊讶的是,你们中的一些人已经明确表示“正忙于帮助改进 OpenVINO™”,谢谢!😊


我们的贡献者所做工作的一个例子是 openSUSE 平台中的 OpenVINO™ 支持。

https://en.opensuse.org/SDB:Install_OpenVINO


然而,在过去的几周里,我们面临着一个重大问题——我们无法足够快地填充 Good First Issues 并审查拉取请求!我们认识到这个问题,并将更加努力地解决它,希望大家持续关注。


此外,我们正在为谷歌代码之夏(Google Summer of Code)(https://github.com/openvinotoolkit/openvino/discussions/categories/google-summer-of-code)做准备,并从您那里获得非常有趣的项目提案!在我们把你的想法发送出去审批之前,还有时间提交您的想法。


在这个版本中,我们挚爱的贡献者列表发布在 GitHub 上:

https://github.com/openvinotoolkit/openvino/releases/tag/2024.0.0


通知和免责声明 


能因使用情况、配置和其他因素而异。如需了解详情,请访问性能检索网站:

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/ 

性能结果基于截止配置中显示日期的测试,可能无法反映所有公开可用的更新。 有关配置详细信息,请参阅备份。 没有任何产品或组件是绝对安全的。  

您的成本和结果可能会有所不同。  英特尔技术可能需要支持的硬件、软件或服务激活。 

© 英特尔公司。 英特尔、英特尔徽标和其他英特尔标志是英特尔公司或其子公司的商标。 其他名称和品牌可能是其他公司的财产。


OpenVINO™

--END--



             
             
             
你也许想了解(点击蓝字查看)⬇️
➡️  隆重推出 OpenVINO 2023.3 ™ 最新长期支持版本
➡️  OpenVINO™ 2023.2 发布:让生成式 AI 在实际场景中更易用
➡️  开发者实战 | 基于 OpenVINO™ 和 LangChain 构建 RAG 问答系统
➡️  开发者实战 | 如何利用低比特量化技术进一步提升大模型推理性能
➡️ 开发者实战 | 介绍OpenVINO™ 2023.1:在边缘端赋能生成式AI
➡️ 基于 ChatGLM2 和 OpenVINO™ 打造中文聊天助手
➡️ 基于 Llama2 和 OpenVINO™ 打造聊天机器人
➡️ OpenVINO™ DevCon 2023重磅回归!英特尔以创新产品激发开发者无限潜能
➡️ 5周年更新 | OpenVINO™  2023.0,让AI部署和加速更容易
➡️ OpenVINO™5周年重头戏!2023.0版本持续升级AI部署和加速性能
➡️ OpenVINO™2023.0实战 | 在 LabVIEW 中部署 YOLOv8 目标检测模型
➡️ 开发者实战系列资源包来啦!
➡️  以AI作画,祝她节日快乐;简单三步,OpenVINO™ 助你轻松体验AIGC


            
            
            

扫描下方二维码立即体验 

OpenVINO™ 工具套件 2024.0


点击 阅读原文 立即体验OpenVINO™ 2024.0
文章这么精彩,你有没有“在看”?

本文分享自微信公众号 - OpenVINO 中文社区(openvinodev)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部