开发者实战 | 在英特尔开发者套件上用 OpenVINO™ 2023.0加速 YOLOv8-Pose 姿态估计模型

原创
06/27 17:58
阅读数 753


01

简介


《在英特尔开发者套件上用OpenVINO™加速YOLOv8-seg实例分割模型》介绍了在英特尔者开发套件上使用 OpenVINO 开发套件部署并测评 YOLOv8-Seg 的实例分割模型,本文将介绍在英特尔开发者套件上使用 OpenVINO 2023.0 加速 YOLOv8-Pose 姿态估计(Pose Estimation)模型。



请先下载本文的范例代码仓,并搭建好 YOLOv8 的OpenVINO 推理程序开发环境


git clone


https://gitee.com/ppovnuc/yolov8_openvino.git



02

导出 YOLOv8-Pose 姿态估计 OpenVINO IR 模型


YOLOv8-Pose 的姿态估计模型有5种,在 COCO Keypoints 数据集完成训练,如下表所示。


COCO Keypoints 数据集请见:

http://cocodataset.org/



首先使用命令:

 yolo export model=yolov8n-pose.pt format=onnx

向右滑动查看完整代码

完成 yolov8n-pose.onnx 模型导出,如下图所示:



然后使用命令:

mo -m yolov8n-pose.onnx --compress_to_fp16

向右滑动查看完整代码

优化并导出 FP16 精度的 OpenVINO IR 格式模型,如下图所示:



03

用 benchmark_app 测试 yolov8 姿态估计模型的推理计算性能


benchmark_app 是 OpenVINO™️ 工具套件自带的 AI 模型推理计算性能测试工具,可以指定在不同的计算设备上,在同步或异步模式下,测试出不带前后处理的纯 AI 模型推理计算性能。


使用命令:

benchmark_app -m yolov8n-pose.xml -d GPU

向右滑动查看完整代码

获得 yolov8n-pose.xml 模型在英特尔开发者套件的集成显卡上的异步推理计算性能,如下图所示



04

使用 OpenVINO Python API 编写 YOLOv8-Pose 姿态估计模型推理程序


用 Netron 打开 yolov8n-seg.onnx 可以看到模型的输入和输出:


输入节点名字:“images”;数据:float32[1,3,640,640]


输出节点1的名字:“output0”;数据:float32 [1,56,8400],其中“8400”是指 YOLOv8 的3个检测头在 imgsz=640 时,有640/8=80,640/16=40,640/32=20,80x80+40x40+20x20=8400个输出单元格;“56”指 “Person” 类的中心坐标 cx,cy,w,h+“Person” 类的置信分数+“Person” 类的17个关键点([17,3]) = 56。



基于 OpenVINO Python API 的 YOLOv8 实例分割模型范例程序  yolov8_pose_ov_sync_infer_demo.py 的核心源代码,如下所示:

# 实例化Core对象core = Core() # 载入并编译模型net = core.compile_model(f'{MODEL_NAME}.xml', device_name="GPU")# 获得模型输出节点output_node = net.outputs[0]  ir = net.create_infer_request()cap = cv2.VideoCapture("store-aisle-detection.mp4")while True:    start = time.time()    ret, frame = cap.read()    if not ret:        break    [height, width, _] = frame.shape    length = max((height, width))    image = np.zeros((length, length, 3), np.uint8)    image[0:height, 0:width] = frame    scale = length / 640    blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)    # 基于OpenVINO实现推理计算    outputs = ir.infer(blob)[output_node]    outputs = np.array([cv2.transpose(outputs[0])])    rows = outputs.shape[1]    # Postprocess    boxes = []    scores = []    preds_kpts = []    for i in range(rows):        classes_scores = outputs[0][i][4]        key_points = outputs[0][i][5:]        if classes_scores >= 0.5:            box = [                outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),                outputs[0][i][2], outputs[0][i][3]]            boxes.append(box)            scores.append(classes_scores)            preds_kpts.append(key_points)    result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)    detections = []    for i in range(len(result_boxes)):        index = result_boxes[i]        box = boxes[index]        pred_kpts = preds_kpts[index]        detection = {            'class_id': 0,            'class_name': 'person',            'confidence': scores[index],            'box': box,            'scale': scale}        detections.append(detection)        print(box[0] * scale, box[1] * scale, scale)        draw_bounding_box(frame, 0, scores[index], round(box[0] * scale), round(box[1] * scale),                          round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))        draw_key_points(frame, pred_kpts, 0.2, scale)

向右滑动查看完整代码

运行结果,如下图所示:



05

结论


英特尔开发者套件借助 N5105 处理器的集成显卡(24个执行单元)和 OpenVINO 2023.0 ,可以在 YOLOv8-Pose 的姿态估计模型上获得相当不错的性能。通过异步处理 AsyncInferQueue ,还能进一步提升计算设备的利用率,提高 AI 推理程序的吞吐量。


--END--


               
               
               
你也许想了解(点击蓝字查看)⬇️
➡️ OpenVINO™ DevCon 2023重磅回归!英特尔以创新产品激发开发者无限潜能
➡️ 5周年更新 | OpenVINO™  2023.0,让AI部署和加速更容易
➡️ OpenVINO™5周年重头戏!2023.0版本持续升级AI部署和加速性能
➡️ OpenVINO™2023.0实战 | 在 LabVIEW 中部署 YOLOv8 目标检测模型
➡️ 开发者实战系列资源包来啦!
➡️  以AI作画,祝她节日快乐;简单三步,OpenVINO™ 助你轻松体验AIGC
➡️  还不知道如何用OpenVINO™作画?点击了解教程。
➡️   几行代码轻松实现对于PaddleOCR的实时推理,快来get!
➡️   使用OpenVINO 在“端—边—云”快速实现高性能人工智能推理
➡️  图片提取文字很神奇?试试三步实现OCR!
➡️ 【Notebook系列第六期】基于Pytorch预训练模型,实现语义分割任务
➡️ 使用OpenVINO™ 预处理API进一步提升YOLOv5推理性能


              
              
              

扫描下方二维码立即体验 

OpenVINO™ 工具套件 2023.0



                       
                       
                       


点击 阅读原文 立即体验OpenVINO 2023.0
文章这么精彩,你有没有“在看

本文分享自微信公众号 - OpenVINO 中文社区(openvinodev)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部