YOLOv5全面解析教程⑧:将训练好的YOLOv5权重导为其它框架格式

原创
05/23 08:03
阅读数 452

撰文|FengWen、BBuf

1

模型导出


这个教程用来解释如何导出一个训练好的OneFlow YOLOv5模型到 ONNX。欢迎大家到这里查看本篇文章的完整版本:https://start.oneflow.org/oneflow-yolo-doc/tutorials/06_chapter/export_onnx_tflite_tensorrt.html


2

开始之前


克隆工程并在 Python>3.7.0 的环境中安装 requiresments.txt , OneFlow 请选择 nightly 版本或者 >0.9 版本 。模型和数据可以从源码中自动下载。


  
  
  
git clone https://github.com/Oneflow-Inc/one-yolov5.gitcd one-yolov5pip install -r requirements.txt  # install


3

格式


YOLOv5支持多种模型格式的导出,并基于特定模型对应的框架获得推理加速。




4

导出训练好的 YOLOv5 模型


下面的命令把预训练的 YOLOV5s 模型导出为 ONNX 格式。yolov5s 是小模型,是可用的模型里面第二小的。其它选项是 yolov5n ,yolov5myolov5lyolov5x ,以及他们的 P6 对应项比如 yolov5s6 ,或者你自定义的模型,即 runs/exp/weights/best 。有关可用模型的更多信息,可以参考我们的README


  
  
  
python export.py --weights ../yolov5s/ --include onnx


💡 提示: 添加 --half 以 FP16 半精度导出模型以实现更小的文件大小。


输出:


  
  
  
export: data=data/coco128.yaml, weights=['../yolov5s/'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['onnx']YOLOv5 🚀 270ac92 Python-3.8.11 oneflow-0.8.1+cu117.git.0c70a3f6be CPU
Fusing layers... YOLOv5s summary: 157 layers, 7225885 parameters, 229245 gradients
OneFlow: starting from ../yolov5s with output shape (1, 25200, 85) (112.9 MB)
ONNX: starting export with onnx 1.12.0...Converting model to onnx....Using opset <onnx, 12>Optimizing ONNX modelAfter optimization: Const +17 (73->90), Identity -1 (1->0), Unsqueeze -60 (60->0), output -1 (1->0), variable -60 (127->67)Succeed converting model, save model to ../yolov5s.onnx<class 'tuple'>Comparing result between oneflow and onnx....Compare succeed!ONNX: export success, saved as ../yolov5s.onnx (28.0 MB)
Export complete (24.02s)Results saved to /home/zhangxiaoyuDetect: python detect.py --weights ../yolov5s.onnx Validate: python val.py --weights ../yolov5s.onnx OneFlow Hub: model = flow.hub.load('OneFlow-Inc/one-yolov5', 'custom', '../yolov5s.onnx')Visualize: https://netron.app


导出的 onnx 模型使用 Netron Viewer 进行可视化的结果如下:




5

导出模型的示例用法


detect.py 可以对导出的模型进行推理:


  
  
  
python path/to/detect.py --weights yolov5s/                  # OneFlow                                   yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn                                   yolov5s.xml                # OpenVINO                                   yolov5s.engine             # TensorRT                                   yolov5s.mlmodel            # CoreML (macOS only)                                   yolov5s_saved_model        # TensorFlow SavedModel                                   yolov5s.pb                 # TensorFlow GraphDef                                   yolov5s.tflite             # TensorFlow Lite                                   yolov5s_edgetpu.tflite     # TensorFlow Edge TPU

val.py 可以对导出的模型进行验证:


  
  
  
python path/to/val.py --weights    yolov5s/                  # OneFlow                                   yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn                                   yolov5s.xml                # OpenVINO                                   yolov5s.engine             # TensorRT                                   yolov5s.mlmodel            # CoreML (macOS only)                                   yolov5s_saved_model        # TensorFlow SavedModel                                   yolov5s.pb                 # TensorFlow GraphDef                                   yolov5s.tflite             # TensorFlow Lite                                   yolov5s_edgetpu.tflite     # TensorFlow Edge TPU

6

ONNX Runtime 推理


基于 onnx 模型使用 onnxruntime 进行推理:


  
  
  
python3 detect.py --weights ../yolov5s/yolov5s.onnx


输出:


  
  
  
detect: weights=['../yolov5s/yolov5s.onnx'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=FalseYOLOv5 🚀 270ac92 Python-3.8.11 oneflow-0.8.1+cu117.git.0c70a3f6be Loading ../yolov5s/yolov5s.onnx for ONNX Runtime inference...detect.py:159: DeprecationWarning: In future, it will be an error for 'np.bool_' scalars to be interpreted as an index  s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to stringimage 1/2 /home/zhangxiaoyu/one-yolov5/data/images/bus.jpg: 640x640 4 persons, 1 bus, Done. (0.009s)image 2/2 /home/zhangxiaoyu/one-yolov5/data/images/zidane.jpg: 640x640 2 persons, 2 ties, Done. (0.011s)0.5ms pre-process, 10.4ms inference, 4.8ms NMS per image at shape (1, 3, 640, 640)Results saved to runs/detect/exp14



参考文章

https://github.com/ultralytics/yolov5/issues/251

其他人都在看

试用OneFlow: github.com/Oneflow-Inc/oneflow/


本文分享自微信公众号 - OneFlow(OneFlowTechnology)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部