OneFlow源码解析:算子指令在虚拟机中的执行

原创
08/09 08:03
阅读数 575

 

撰文|郑建华、赵露阳

 

1 

Op在虚拟机里的执行

 

1.1 PhysicalRun和InstructionsBuilder

 

上一篇文章OneFlow源码解析:Op、Kernel与解释器提到:

PhysicalRun接受一个lambda函数作为参数,这里即InstructionsBuilder->Call方法,该方法接受kernel、input/output的eager blob object、kernel执行的上下文作为参数。Call方法实际会完成OpCall指令的构建,并最终将其派发至vm指令列表中,等待VM实际调度执行。

这个PhysicalRun函数里包裹着一个lambda函数:

 


 
JUST(PhysicalRun([&](InstructionsBuilder* builder) -> Maybe<void> {    return builder->Call(xxx);}));

 

其中,lambda函数接受一个InstructionsBuilder指针(builder),并调用builder->Call方法,用于实际完成Op指令在VM中的构建。而PhysicalRunhttps://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/framework/instructions_builder.h#L160oneflow/core/framework/instructions_builder.h中定义,其接受lambda函数作为模版参数(CallbackT):

 


 
// Make VM instructions with instruction builder and run instructions with physical/local view.template<typename CallbackT>Maybe<void> PhysicalRun(const CallbackT& Build) {  vm::InstructionList instruction_list;  InstructionsBuilder instructions_builder(&instruction_list);  JUST(Build(&instructions_builder));  JUST(vm::Run(instructions_builder.mut_instruction_list()));  return Maybe<void>::Ok();}

 

可见,PhysicalRun函数中,首先初始化一个InstructionsBuilder,然后将InstructionsBuilder指针作为参数传给lambda函数,完成实际指令的构建;最后通过vm::Run()方法将该指令发送至VM,等候VM实际调度和执行。Run方法如下:

 


 
Maybe<void> Run(vm::InstructionList* instruction_list) {  auto* virtual_machine = JUST(SingletonMaybe<VirtualMachine>());  JUST(virtual_machine->Receive(instruction_list));  return Maybe<void>::Ok();}

 

可以看见,Run()方法获取了全局单例的VM对象指针,然后通过vm的Receive()方法,将该条指令发送给虚拟机(所以这里Run其实有点歧义,更贴切的意思,其实是指令发送或传送)

 

这个VirtualMachine->Receive方法很重要,会在后面的第2.章节中详细展开

 

1.2 InstructionsBuilder

 

上面PhysicalRun函数中的InstructionsBuilder,类似一个指令构建的helper,InstructionsBuilder的系列方法配合指令策略(InstructionPolicy),可以帮助构建不同类型的vm指令。

 

InstructionsBuilder

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/framework/instructions_builder.h#L47)的定义中,我们可以看到指令的构建方法,其中常用方法如下:

 


 
// 用于lazy mode(nn.Graph)// Build VM execution instructions with NNGraph's inputs/outputs/parameters for NNGraph execution.Maybe<void> LaunchLazyJob(const vm::EagerBlobObjectListPtr& inputs,                          const vm::EagerBlobObjectListPtr& outputs,                          const vm::EagerBlobObjectListPtr& parameters,                          const std::shared_ptr<NNGraphIf>& nn_graph);

// 用于全局同步,同步等待所有指令调用完成Maybe<void> GlobalSync();
// 用于Tensor内存释放(归还allocator)Maybe<void> ReleaseTensor(const std::shared_ptr<vm::EagerBlobObject>& eager_blob_object);
// 操作Tensor实际内存(blob)template<typename T>Maybe<void> AccessBlobByCallback(    const T tensor,    const std::function<void(ep::Stream*, const std::shared_ptr<vm::EagerBlobObject>&)>& callback,    const std::string& modifier);
// 最常用的指令构建方法,用于构造op执行所需的OpCall指令Maybe<void> Call(const std::shared_ptr<one::StatefulOpKernel>& opkernel,                   vm::EagerBlobObjectList&& input_eager_blob_objects,                   vm::EagerBlobObjectList&& output_eager_blob_objects,                   const one::OpExprInterpContext& ctx, Symbol<Stream> stream);

 

1.3 InstructionPolicy

 

InstructionPolicy

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/instruction_policy.h#L34)——指令策略,通常用于配合InstructionsBuilder实际构建出不同的vm指令。InstructionPolicy的子类实现如下:

 

 

这些子类的InstructionPolicy可近似认为是指令类型。如,用于Op执行的OpCallInstructionPolicy、用于Tensor内存释放的ReleaseTensorInstructionPolicy、用于屏障阻塞的BarrierInstructionPolicy等。

 

以Op执行为例:

 


 
JUST(PhysicalRun([&](InstructionsBuilder* builder) -> Maybe<void> {    return builder->Call(xxx);}));

 

实际上是通过InstructionsBuilder的Call方法

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/framework/instructions_builder.cpp#L355),配合OpCall的指令策略(OpCallInstructionPolicy),构造了OpCall指令:

 


 
Maybe<void> InstructionsBuilder::Call(    const std::shared_ptr<one::StatefulOpKernel>& opkernel,    vm::EagerBlobObjectList&& input_eager_blob_objects,    vm::EagerBlobObjectList&& output_eager_blob_objects,    const std::shared_ptr<const one::GlobalTensorInferResult>& global_tensor_infer_result,    const one::OpExprInterpContext& ctx, Symbol<Stream> stream) {  ...  ...  // 获取当前vm stream  auto* vm_stream = JUST(Singleton<VirtualMachine>::Get()->GetVmStream(stream));  // 通过OpCallInstructionPolicy初始化OpCall指令  auto instruction = intrusive::make_shared<vm::Instruction>(      vm_stream, std::make_shared<vm::OpCallInstructionPolicy>(                     vm_stream, opkernel, std::move(input_eager_blob_objects),                     std::move(output_eager_blob_objects), global_tensor_infer_result, ctx,                     *one::CurrentDevVmDepObjectConsumeMode()));  // 指令入列表  instruction_list_->EmplaceBack(std::move(instruction));  return Maybe<void>::Ok();}

 

并将构建好的指令塞入指令列表,待后续VM调度并实际执行。

 

2 

虚拟机的运行原理

 

2.1 VM初始化

 

OneFlow环境初始化时,会触发VirtualMachineScope

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/virtual_machine_scope.cpp#L24)的初始化:

 


 
VirtualMachineScope::VirtualMachineScope(const Resource& resource) {  Singleton<VirtualMachine>::New();}

 

进而触发VM对象——VirtualMachine

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/virtual_machine.cpp#L81)的初始化。VM作为一个Singleton对象,全局唯一。

 


 
VirtualMachine::VirtualMachine() : disable_vm_threads_(false), scheduler_stopped_(false) {  // Class VirtualMachineEngine only cares the basic logical of vm, while class VirtualMachine  // manages threads and condition variables.  // In order to notify threads in VirtualMachineEngine, a notify callback lambda should be take as  // an argument for VirtualMachineEngine's constructor.  engine_ = intrusive::make_shared<vm::VirtualMachineEngine>();  OF_PROFILER_NAME_THIS_HOST_THREAD("_Main");  std::function<void()> SchedulerInitializer;  GetSchedulerThreadInitializer(&SchedulerInitializer);  schedule_thread_ = std::thread(&VirtualMachine::ScheduleLoop, this, SchedulerInitializer);  transport_local_dep_object_.Reset();}

 

VM初始化中最重要的内容,便是:

 

1.初始化了一个VM的执行引擎——VirtualMachineEngine

2.通过VirtualMachine::ScheduleLoop启动了VM的调度线程

 

VirtualMachine::ScheduleLoop

 

VM对象只负责条件变量和线程管理;而主要业务逻辑处理(包括指令构建、调度、派发和执行等),则由 VirtualMachineEngine

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/virtual_machine_engine.h#L47 )对象负责;VM初始化时还开辟了单独的schedule线程用于VM引擎处理调度逻辑,在VirtualMachine::ScheduleLoop

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/virtual_machine.cpp#L292 )中:

 


 
void VirtualMachine::ScheduleLoop(const std::function<void()>& Initializer) {  SyncVmModeGuard guard(SyncVmMode::kEnable);  Initializer();  MultiThreadScheduleCtx schedule_ctx{};  while (pending_notifier_.WaitAndClearNotifiedCnt() == kNotifierStatusSuccess) {    OF_PROFILER_RANGE_GUARD("VirtualMachine::ScheduleLoop");    auto start = std::chrono::steady_clock::now();    static constexpr int kWorkingMicroseconds = 1000;    // Every time this thread wakes up, engine_ is scheduled for about `kWorkingMicroseconds`.    // The cost of os thread switching is about 5-10 microseconds. Doing more scheduling in    // a single waiting up can reach higher performance.    do {      do {        const size_t total_inserted = engine_->total_inserted_instruction_cnt();        const size_t total_erased = engine_->total_erased_instruction_cnt();        engine_->Schedule(schedule_ctx);        if (ThreadLocalEnvBool<ONEFLOW_VM_ENABLE_SCHEDULE_YIELD>()            && total_inserted == engine_->total_inserted_instruction_cnt()            && total_erased == engine_->total_erased_instruction_cnt()) {  // nothing handled.          std::this_thread::yield();        }      } while (!engine_->SchedulerThreadUnsafeEmpty());    } while (MicrosecondsFrom(start) < kWorkingMicroseconds);  }  ScheduleUntilVMEmpty(engine_.Mutable(), schedule_ctx);  CHECK_JUST(ForEachThreadCtx(engine_.Mutable(), [&](vm::ThreadCtx* thread_ctx) -> Maybe<void> {    thread_ctx->mut_notifier()->Close();    return Maybe<void>::Ok();  }));  {    std::unique_lock<std::mutex> lock(worker_threads_mutex_);    for (const auto& worker_thread : worker_threads_) { worker_thread->join(); }  }  scheduler_stopped_ = true;}

 

ScheduleLoop 是一个近似于busy loop的while循环,pending_notifier_是VM内部维护的成员,实际上是 ScheduleLoop 线程的通知/唤醒者,其定义位于 oneflow/oneflow/core/common/notifier.h

 


 
class Notifier final { public:  OF_DISALLOW_COPY_AND_MOVE(Notifier);  Notifier() : notified_cnt_(0), is_closed_(false) {}  ~Notifier() = default;
  NotifierStatus Notify();  NotifierStatus WaitAndClearNotifiedCnt();  void Close();
 private:  size_t notified_cnt_;  std::mutex mutex_;  bool is_closed_;  std::condition_variable cond_;};

 

其主要维护了互斥锁mutex_、线程是否关闭的flag is_closed_、条件变量cond_。忽略线程唤醒、超时相关逻辑,ScheduleLoop中最重要的事情是 engine_->Schedule(schedule_ctx) ;

 


 
while (pending_notifier_.WaitAndClearNotifiedCnt() == kNotifierStatusSuccess) {    auto start = std::chrono::steady_clock::now();    ...    do {      do {        ...        engine_->Schedule(schedule_ctx);        ...      } while (!engine_->SchedulerThreadUnsafeEmpty());    } while (MicrosecondsFrom(start) < kWorkingMicroseconds);  }

 

当VM维护的指令队列不为空时,便不断唤醒VM引擎执行指令调度逻辑—— engine->Schedule()

 

2.2 VM指令调度

 


   
void VirtualMachineEngine::Schedule(const ScheduleCtx& schedule_ctx) {  // Release finished instructions and try to schedule out instructions in DAG onto ready list.  if (unlikely(mut_active_stream_list()->size())) { ReleaseFinishedInstructions(schedule_ctx); }  // Try run the first barrier instruction.  if (unlikely(mut_barrier_instruction_list()->size())) { TryRunBarrierInstruction(schedule_ctx); }  // Handle pending instructions, and try schedule them to ready list.  // Use thread_unsafe_size to avoid acquiring mutex lock.  // The inconsistency between pending_instruction_list.list_head_.list_head_.container_ and  // pending_instruction_list.list_head_.list_head_.size_ is not a fatal error because  // VirtualMachineEngine::Schedule is always in a buzy loop. All instructions will get handled  // eventually.  //  VirtualMachineEngine::Receive may be less effiencient if the thread safe version  //  `pending_instruction_list().size()` used here, because VirtualMachineEngine::Schedule is more  //  likely to get the mutex lock.  if (unlikely(local_pending_instruction_list().size())) {    HandleLocalPending();  } else if (unlikely(pending_instruction_list().thread_unsafe_size())) {    // MoveTo is under a lock.    mut_pending_instruction_list()->MoveTo(mut_local_pending_instruction_list());    if (local_pending_instruction_list().size()) { HandleLocalPending(); }  }  // dispatch ready instructions and try to schedule out instructions in DAG onto ready list.  if (unlikely(mut_ready_instruction_list()->size())) {    DispatchAndPrescheduleInstructions(schedule_ctx);  }  // handle scheduler probes  if (unlikely(local_probe_list_.size())) {    HandleLocalProbe();  } else if (unlikely(probe_list_.thread_unsafe_size())) {    probe_list_.MoveTo(&local_probe_list_);    if (local_probe_list_.size()) { HandleLocalProbe(); }  }}

 

 

VM引擎维护了一系列指令列表的成员:

 


 
InstructionMutexedList pending_instruction_list_;// local_pending_instruction_list_ should be consider as the cache of pending_instruction_list_.InstructionList local_pending_instruction_list_;ReadyInstructionList ready_instruction_list_;LivelyInstructionList lively_instruction_list_;BarrierInstructionList barrier_instruction_list_;

 

  • pending相关的instruction_list是悬挂/待处理的指令列表;

  • lively相关的instruction_list是活跃的正在执行中的指令列表;

  • ready相关的instruction_list则是已完成准备工作(指令融合、指令DAG构建等)待执行的指令列表;

 

VM引擎Schedule时,会对指令队列做相应处理,包括:

 

  • 将已完成准备工作的指令放入ready_instruction_list_中维护;

  • 尝试运行barrier指令列表(barrier_instruction_list_)中的第一条指令;

  • 如果本地pending指令列表(local_pending_instruction_list_)非空,则通过 HandleLocalPending 方法处理这些悬挂指令(指令融合、指令执行DAG图构建、插入ready列表)

  • 如果ready指令列表非空,则通过 DispatchAndPrescheduleInstructions 方法进行指令派发和预调度处理。

 

这里重点介绍指令派发相关的 DispatchAndPrescheduleInstructions 方法,其中 DispatchAndPrescheduleInstructions 中最主要的是就是 DispatchInstruction 指令派发方法,这里的指令派发可以认为实际上就是指令执行

 

2.3 VM指令派发

 

VirtualMachineEngine::DispatchInstruction  

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/virtual_machine_engine.cpp#L372 )方法是vm引擎中的核心,其实际完成了指令的派发和实际执行,代码如下:

 


 
template<void (VirtualMachineEngine::*OOMHandler)(vm::Stream*, const ScheduleCtx&)>void VirtualMachineEngine::DispatchInstruction(Instruction* instruction,                                               const ScheduleCtx& schedule_ctx) {  auto* stream = instruction->mut_stream();  // Prepare  {    // 指令的Prepare    const auto& ret = TRY(instruction->Prepare());    if (unlikely(!ret.IsOk())) {      // 处理指令Prepare过程中的OOM的逻辑      if (ret.error()->has_out_of_memory_error()) {        // 让allocator释放不必要的cacahe,再重新执行指令的Prepare        (this->*OOMHandler)(stream, schedule_ctx);        ...      }    }  }  // 将当前指令放入running_instruction_list  stream->mut_running_instruction_list()->PushBack(instruction);  if (stream->active_stream_hook().empty()) { mut_active_stream_list()->PushBack(stream); }  // Compute  if (OnSchedulerThread(*stream)) {    // StreamPolicy的Run方法触发指令的实际执行——Compute    stream->stream_policy().Run(instruction);  } else {    stream->mut_thread_ctx()->mut_worker_pending_instruction_list()->PushBack(instruction);    schedule_ctx.OnWorkerLoadPending(stream->mut_thread_ctx());  }}

DispatchInstruction的核心主要有2块:

 

  • 执行指令的Prepare

  • 执行指令的Compute

 

Prepare负责一些指令执行前的准备;Compute则是实际的指令执行,指令执行并不是直接通过instruction->Run而是在StreamPolicy的Run方法中完成的,这里又涉及到一个StreamPolicy对象。

 

StreamPolicy::Run

 

StreamPolicy

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/stream_policy.h#L46 )是个虚基类:

 


 
class StreamPolicy { public:  virtual ~StreamPolicy() = default;
  virtual ep::Stream* stream() = 0;  virtual vm::Allocator* mut_allocator() = 0;  virtual DeviceType device_type() const = 0;
  virtual void InitInstructionStatus(const Stream& stream,                                     InstructionStatusBuffer* status_buffer) const = 0;  virtual void DeleteInstructionStatus(const Stream& stream,                                       InstructionStatusBuffer* status_buffer) const = 0;  virtual bool QueryInstructionStatusDone(const Stream& stream,                                          const InstructionStatusBuffer& status_buffer) const = 0;  virtual void Run(Instruction* instruction) const = 0;
  virtual bool OnSchedulerThread(StreamType stream_type) const;  virtual bool SupportingTransportInstructions() const = 0;
 protected:  StreamPolicy() = default;};
  • stream()方法返回ep::Stream指针,指向的是针对不同平台的ep::stream对象。

  • mut_allocator()方法返回一个vm的Allocator指针,用于内存分配/释放。

  • InitInstructionStatus/QueryInstructionStatusDone/DeleteInstructionStatus用于创建/查询/销毁指令执行状态

  • Run方法则是核心,定义了该Stream具体运行时的逻辑。

这里的ep在oneflow中是execution provider的缩写,ep从本质上来讲就是一个针对不同硬件平台的executor抽象。

 

StreamPolicy相关的继承和子类如下:

 

 

 

看一下EpStreamPolicyBase的Run方法( https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/ep_stream_policy_base.cpp#L41 ):

 


 
void EpStreamPolicyBase::Run(Instruction* instruction) const {  ...  auto* stream = instruction->mut_stream();  EpStreamPolicyBase* ep_stream_policy_base =      dynamic_cast<EpStreamPolicyBase*>(stream->mut_stream_policy());  ...  auto* ep_device = ep_stream_policy_base->GetOrCreateEpDevice();  ep_device->SetAsActiveDevice();  instruction->Compute();  ...}

 

首先获取了该stream对应的ep device,然后执行了instruction的Compute方法,即指令的实际执行

 

2.4 VM执行执行

 

以OpCall指令为例,看一下op指令的 Compute

https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/op_call_instruction_policy.cpp#L201 ):

 


 
void OpCallInstructionPolicy::Compute(vm::Instruction* instruction) {  OpCallInstructionUtil::Compute(this, instruction);}

 

OpCallInstructionPolicy方法调用了OpCallInstructionUtil的Compute方法:

 

 

上面我们可以看到,在指令Prepare时,做了output tensor内存分配;而指令Compute中最重要的方法是:

 

  • TryInitOpKernelStateAndCache——初始化一些kernel计算需要的状态或缓存

  • OpKernelCompute——执行该op对应的kernel,kernel内主要是实际的op计算逻辑

 

 

user kernel统一位于:oneflow/user/kernels目录下,.cpp通常对应cpu kernel逻辑;.cu为cuda kernel逻辑。到这里,就会触发user_kernel的Compute方法,不同op的kernel计算逻辑不同,以rele op为例,实际Compute过程可参考文章《算子在深度学习框架中的执行及interpreter》的第5小节

 

2.5 VM指令发送

 

这里的VM指令发送,指的是VM外部的指令发送过程(不是VM内部的指令派发)。上面2.1~2.3小节介绍了VM以及VM引擎的初始化、VM内部指令的调度、派发和实际执行的过程,那么这些指令是如何发送到VM的呢?答案是:在1.1小节中提到的PhysicalRun

 

PhysicalRun 最终会触发 VirtualMachine->Receive 方法,并通过VirtualMachineEngine的Receive方法完成外部指令 -> VM内部的发送。

 

VirtualMachineEngine的Receive方法( https://github.com/Oneflow-Inc/oneflow/blob/88f147d50e75d1644e552ed445dd58f9b5121ea5/oneflow/core/vm/virtual_machine_engine.cpp#L400 )主要将该指令通过MoveFrom方法push back到指令悬挂列表(pending_instruction_list_)的末尾,从而完成指令的发送。

 


 
// Returns true if old scheduler_pending_instruction_list is emptyMaybe<bool> VirtualMachineEngine::Receive(InstructionList* compute_instruction_list) {  OF_PROFILER_RANGE_GUARD("vm:Receive");#ifdef OF_ENABLE_PROFILER  INTRUSIVE_UNSAFE_FOR_EACH_PTR(compute_instruction, compute_instruction_list) {    OF_PROFILER_RANGE_GUARD(compute_instruction->DebugName());  }#endif
  bool old_list_empty = mut_pending_instruction_list()->MoveFrom(compute_instruction_list);  return old_list_empty;}

 

小结

 

至此,Op执行相关的流程算是大体串了一遍。一句 flow.relu() 后面会涉及这么多内容。但这里其实也只关注了主干逻辑,忽略了中间大量的细节。

 

流程的梳理只是第一步,还需要从中归纳总结一些概念和概念之间的关系,再结合公开资料反推印证设计理念的落地实现。

 

不过目前对代码和设计的了解还很肤浅,下面的内容纯属大胆猜测。

 

3.1 UserOpExpr

 

UserOpExpr表示UserOp执行时所需的上下文,其实UserOp只是Op中的一种。下图展示了不同Op的继承关系。可以看到tensor从local/global之间的转换等也都涉及不同的OpExpr。

 

 

 

3.2 Op执行的宏观脉络

 

从上面的类关系图出发,以核心类为节点,也能看出Op执行流程的宏观脉络。整个流程大体在下面这些角色之间流转:

 

  • ReluFunctor

  • UserOpExpr

  • Interpreter

  • PhysicalRun

  • VirtualMachine->Receive

  • VirtualMachine->ScheduleLoop ...

 

3.3 虚拟机运行和调度总结

 

VM -> ScheduleLoop

       VM引擎Schedule

               处理悬挂指令(HandleLocalPending)

               指令派发(DispatchInstruction)

                      准备(instruction->Prepare)

                      执行(StreamPolicy.Run -> instruction->Compute)

               指令预调度

 

VM -> Receive

         VM引擎 -> Receive

               指令入悬挂列表

 

通常,我们习惯在动态图模式下训练深度学习网络,使用Python搭建网络,并通过各种op进行前向、反向、loss计算、调试debug等过程,这些Python代码可以看作是动态的op的执行序列。

 

OneFlow虚拟机将op执行序列抽象成了各种VM指令序列。OneFlow的虚拟机会对这些op执行序列进行动态翻译并生成VM指令序列,通过PhysicalRun构造完毕后,动态地将指令发送至VM的悬挂列表中维护。这些指令或在时间上存在先后顺序,或在数据上存在依赖关系,所以悬挂列表中的指令后续会被虚拟机进行一些指令融合、指令连边、动态构建指令DAG图的过程,然后移入就绪列表中维护,等待虚拟机调度并实际执行。虚拟机负责维护若干个指令队列,以及指令在这些队列之间的状态转换。

 

OneFlow虚拟机还统一了动态图模式(Eager Mode)和静态图模式(Lazy Mode)。静态图模式下,通过nn.Graph编译出深度学习网络的Job,这个Job同样被虚拟机抽象成了VM指令并接受虚拟机的调度和执行。大胆猜测一下,这也为日后动静转换、更极致的性能优化埋下了伏笔。

 

参考资料

 

 

其他人都在看

欢迎体验OneFlow v0.8.0:https://github.com/Oneflow-Inc/oneflow/

 


​​

本文分享自微信公众号 - OneFlow(OneFlowTechnology)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

展开阅读全文
加载中

作者的其它热门文章

打赏
0
0 收藏
分享
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部