进程切换与系统调用(中断和异常)切换哪个耗时耗资源多?

04/10 16:27
阅读数 72

模式切换不同于进程上下文切换,它进行的应该是模式之间的上下文切换

  切换模式并不会发生进程上下文切换,因为用户和内核都有自己独立的堆栈
  每个进程都有两个堆栈:用户空间堆栈,内核空间堆栈

在这个过程中就发生了 CPU 上下文切换,整个过程是这样的:

1、保存 CPU 寄存器里原来用户态的指令位

2、为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。

3、跳转到内核态运行内核任务。

4、当系统调用结束后,CPU

	寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。

所以,一次系统调用的过程,其实是发生了两次 CPU 上下文切换。(用户态-内核态-用户态)

不过,需要注意的是,系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。这跟我们通常所说的进程上下文切换是不一样的:进程上下文切换,是指从一个进程切换到另一个进程运行;而系统调用过程中一直是同一个进程在运行。

系统调用过程通常称为特权模式切换,而不是上下文切换。系统调用属于同进程内的 CPU 上下文切换。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免的。

首先,进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。

因此,进程的上下文切换就比系统调用时多了一步:在保存内核态资源(当前进程的内核状态和 CPU 寄存器)之前,需要先把该进程的用户态资源(虚拟内存、栈等)保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。

保存上下文和恢复上下文的过程并不是“免费”的,需要内核在 CPU 上运行才能完成。

特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也正是导致平均负载升高的一个重要因素。

发生进程上下文切换的场景

为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。

进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行。

当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。

当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行

发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

线程上下文切换

线程与进程最大的区别在于:线程是调度的基本单位,而进程则是资源拥有的基本单位。说白了,所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。

所以,对于线程和进程,我们可以这么理解: - 当进程只有一个线程时,可以认为进程就等于线程。 - 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。 -

另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。

###发生线程上下文切换的场景

前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。

前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据

###中断上下文切换

为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。

对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。

另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。

转载于 https://www.jianshu.com/p/dee80690ac73

为什么系统调用比普通的函数调用更耗时?用户态和内核态切换的代价在哪?

当程序中有系统调用语句,程序执行到系统调用时,首先使用类似int 80H的软中断指令,保存现场,去的系统调用号,在内核态执行,然后恢复现场,每个进程都会有两个栈,一个内核态栈和一个用户态栈。当执行int中断执行时就会由用户态,栈转向内核栈。系统调用时需要进行栈的切换。而且内核代码对用户不信任,需要进行额外的检查。系统调用的返回过程有很多额外工作,比如检查是否需要调度等。

系统调用一般都需要保存用户程序得上下文(context), 在进入内核得时候需要保存用户态得寄存器,在内核态返回用户态得时候会恢复这些寄存器得内容。这是一个开销的地方。 如果需要在不同用户程序间切换的话,那么还要更新cr3寄存器,这样会更换每个程序的虚拟内存到物理内存映射表的地址,也是一个比较高负担的操作。

系统调用

1.系统调用和普通函数完全不同,系统调用实际上是0x80号中断对应的中断处理程序的子程序。换句话说,在linux系统上,0x80中断是系统调用的统一入口。某个具体的系统调用是这个中断处理程序的子程序,进入具体某个系统调用是通过内核定义的系统调用号码来实现的。linux通过执行如下汇编代码陷入内核执行系统调用: int 0x80; //这一句是进入系统调用统一入口。 2.每个系统调用在内核里面都对应一个号码,这个号码是在/usr/include/i386-linux-gnu/asm/unistd_32.h中定义的。如下图,图1所示

图1 内核定义系统调用号码

在执行"int 0x80;"进行中断之前,应用层会做如下准备工作: 1.把系统调用号码赋值给寄存器EAX; 2.把系统调用需要的参数按次序赋值给寄存器EBX,ECX,EDX等等。 这样,等下0x80中断发生的时候,系统调用需要的全部信息就能通过这些寄存器传递给中断处理程序了。 注:实际上系统调用需要的参数也可以使用应用程序的栈传入内核。稍后实验环节可以看到,这个不用太纠结。 ———————————————— 版权声明:本文为CSDN博主「yhc166188」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/yhc166188/article/details/81533185

系统调用和普通调用的区别

系统调用本质上是一种过程调用,但它是一种特殊的过程调用,与一般用户程序中的过程调用有明显的区别 。 [2] 运行状态不同 运行状态不同。系统调用的调用过程和被调用过程运行在不同的状态,而普通的过程调用一般运行在相同的状态。 [2] 调用方法不同 调用方法不同。系统调用必须通过软中断机制首先进入系统核心,然后才能转向相应的命令处理程序。普通过程调用可以直接由调用过程转向被调用过程。 [2] 返回问题 返回问题。在采用抢先式调度的系统中,当系统调用返回时,要重新进行调度分析――是否有更高优先级的任务就绪。普通的过程调用直接返回调用过程继续执行。

来自于 https://baike.baidu.com/item/%E7%B3%BB%E7%BB%9F%E8%B0%83%E7%94%A8/861110?fr=aladdin

系统调用与库函数是什么,区别是什么

一、是什么

系统调用  系统调用是通向操作系统本身的接口,是面向底层硬件的。通过系统调用,可以使得用户态运行的进程与硬件设备(如CPU、磁盘、打印机等)进行交互,是操作系统留给应用程序的一个接口。下面适用于访问设备驱动程序的系统调用:

open: 打开文件或设备  read: 从打开的文件或设备中读取数据  write: 向打开的文件或设备中写入数据  close: 关闭文件或设备  ioctl: 把控制信息传递给设备驱动文件

用户进程需要发生系统调用时,内核将调用内核相关函数来实现(如sys_read(),sys_write(),sys_fork())。用户程序不能直接调用这些函数,这些函数运行在内核态,CPU 通过软中断切换到内核态开始执行内核系统调用函数。

用户态–>系统调用–>内核态–>返回用户态

实际上使用系统调用会影响系统的性能,在执行调用时的从用户态切换到内核态,再返回用户态会有系统开销。为了减少开销,因此需要减少系统调用的次数,并且让每次系统调用尽可能的完成多的任务。硬件也会限制对底层系统调用一次所能写的数据块的大小。为了给设备和文件提供更高层的接口,Linux系统提供了一系列的标准函数库。使用标准库函数,可以高效的写任意长度的数据块,库函数在数据满足数据块长度要求时安排执行底层系统调用。

一般地,操作系统为了考虑实现的难度和管理的方便,它只提供一少部分的系统调用,这些系统调用一般都是由C和汇编混合编写实现的,其接口用C来定义,而具体的实现则是汇编,这样的好处就是执行效率高,而且,极大的方便了上层调用。

二、库函数  库函数(Library function)是把函数放到库里,供别人使用的一种方式。.方法是把一些常用到的函数编完放到一个文件里,供不同的人进行调用。一般放在.lib文件中。库函数调用则是面向应用开发的,库函数可分为两类,一类是C语言标准规定的库函数,一类是编译器特定的库函数。(由于版权原因,库函数的源代码一般是不可见的,但在头文件中你可以看到它对外的接口)。

glibc 是 Linux 下使用的开源的标准 C 库,它是 GNU 发布的 libc 库,即运行时库。这些基本函数都是被标准化了的,而且这些函数通常都是用汇编直接实现的。glibc 为程序员提供丰富的 API(Application Programming Interface),我们经常说到的POSIX(Portable Operating System Interface of Unix)是针对API的标准,即针对API的函数名,返回值,参数类型等。POSIX兼容也就指定这些接口函数兼容,但是并不管API具体如何实现。

随着系统提供的这些库函数把系统调用进行封装或者组合,可以实现更多的功能,这样的库函数能够实现一些对内核来说比较复杂的操作。比如,read()函数根据参数,直接就能读文件,而背后隐藏的比如文件在硬盘的哪个磁道,哪个扇区,加载到内存的哪个位置等等这些操作,程序员是不必关心的,这些操作里面自然也包含了系统调用。而对于第三方的库,它其实和系统库一样,只是它直接利用系统调用的可能性要小一些,而是利用系统提供的API接口来实现功能(API的接口是开放的)。部分Libc库中的函数的功能的实现还是借助了系统掉调用,比如printf的实现最终还是调用了write这样的系统调用;而另一些则不会使用系统调用,比如strlen, strcat, memcpy等。 

系统调用是为了方便使用操作系统的接口,而库函数则是

为了人们编程的方便。

库函数调用与系统无关,不同的系统,调用库函数,库函数会调用不同的底层函数实现,因此可移植性好。由于库函数是基于c库的,因此不能用于内核对于底层驱动设备的操作。 

二、区别

(1)库函数是语言或应用程序的一部分,而系统调用是内核提供给应用程序的接口,属于系统的一部分

(2)库函数在用户地址空间执行,系统调用是在内核地址空间执行,库函数运行时间属于用户时间,系统调用属于系统时间,库函数开销较小,系统调用开销较大

(3)库函数是有缓冲的,系统调用是无缓冲的

(4)系统调用依赖于平台,库函数并不依赖

———————————————— 版权声明:本文为CSDN博主「lht1314tttt」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/lht1314tttt/article/details/79150776

总结:

系统调用函数就是 特权切换 把cpu的ring3级别升级到ring0级别;所以这个时候需要做各种特权的赋能;即要从用户态到内核态的切换,然后完了再切回来;

库函数调用就是正常 的调用,和调用cpu指令一样;没有什么不一样的地方;

所以,java程序员写的程序和调用jvm里面的函数其实也没啥不一样的区别;

唯一的不一样的根源就是 cpu的级别有ring0到ring3,linux就取了两个级别; ring0 内核态, ring3 用户态; 还有一个核心的地方,就是系统调用是以中断为入口,然后还要做一些额外的安全检查之类的等;两个状态的的切换感觉和上下文切换差不多;

所以java的cas调用了cmpxchg指令调用的是cpu指令,不存在系统调用,性能会比较快;其实任何操作都是调用cpu指令,不可能说cpu指令慢; 而 synchrinized 和 lock 调用了futex系统调用;所以会比较耗时;

参考 [实战证明java中的两把锁synchronized的系统调用](https://zhuanlan.zhihu.com/p/353794154)

所有系统调用的汇总
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

展开阅读全文
打赏
0
0 收藏
分享
加载中
更多评论
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部