文档章节

分布式系统领域经典论文翻译集

m
 moodlxs
发布于 2014/12/30 16:43
字数 1814
阅读 104
收藏 1

分布式领域论文译序

sql&nosql年代记

SMAQ:海量数据的存储计算和查询

一.google论文系列

1.      google系列论文译序

2.      The anatomy of a large-scale hypertextual Web search engine (译 zz)

3.      web search for a planet :the google cluster architecture(译)

4.      GFS:google文件系统 (译)

5.      MapReduce: Simplied Data Processing on Large Clusters (译)

6.      Bigtable: A Distributed Storage System for Structured Data (译)

7.      Chubby: The Chubby lock service for loosely-coupled distributed systems (译)

8.      Sawzall:Interpreting the Data--Parallel Analysis with Sawzall (译 zz)

9.      Pregel: A System for Large-Scale Graph Processing (译)

10.  Dremel: Interactive Analysis of WebScale Datasets(译zz)

11.  Percolator: Large-scale Incremental Processing Using Distributed Transactions and Notifications(译zz)

12.   MegaStore: Providing Scalable, Highly Available Storage for Interactive Services(译zz)

13.   Case Study GFS: Evolution on Fast-forward (译)

14.   Google File System II: Dawn of the Multiplying Master Nodes

15.   Tenzing - A SQL Implementation on the MapReduce Framework (译)

16.   F1-The Fault-Tolerant Distributed RDBMS Supporting Google's Ad Business

17.   Elmo: Building a Globally Distributed, Highly Available Database

18.   PowerDrill:Processing a Trillion Cells per Mouse Click

19.   Google-Wide Profiling:A Continuous Profiling Infrastructure for Data Centers

20.   Spanner: Google’s Globally-Distributed Database(译zz)

21.   Dapper, a Large-Scale Distributed Systems Tracing Infrastructure(笔记)

22.   Omega: flexible, scalable schedulers for large compute clusters

23.   CPI2: CPU performance isolation for shared compute clusters

24.   Photon: Fault-tolerant and Scalable Joining of Continuous Data Streams(译)

25.   F1: A Distributed SQL Database That Scales

26.   MillWheel: Fault-Tolerant Stream Processing at Internet Scale(译)

27.   B4: Experience with a Globally-Deployed Software Defined WAN

28.   The Datacenter as a Computer

29.   Google brain-Building High-level Features Using Large Scale Unsupervised Learning

google系列论文翻译集(合集)

二.分布式理论系列

00.    Appraising Two Decades of Distributed Computing Theory Research

       0.      分布式理论系列译序

1.      A brief history of Consensus_ 2PC and Transaction Commit (译)

2.      拜占庭将军问题 (译) --Leslie Lamport

3.      Impossibility of distributed consensus with one faulty process (译)

4.      Leases:租约机制 (译)

5.      Time Clocks  and the Ordering of Events in a Distributed System(译)  --Leslie Lamport

6.      关于Paxos的历史

7.      The Part Time Parliament (译 zz) --Leslie Lamport

        8.      How to Build a Highly Available System Using Consensus(译)

9.      Paxos Made Simple (译) --Leslie Lamport

10.      Paxos Made Live - An Engineering Perspective(译)

       11.    2 Phase Commit(译)

       12.    Consensus on Transaction Commit(译) --Jim Gray & Leslie Lamport

       13.    Why Do Computers Stop and What Can Be Done About It?(译) --Jim Gray

       14.    On Designing and Deploying Internet-Scale Services(译) --James Hamilton

       15.    Single-Message Communication(译)

16.    Implementing fault-tolerant services using the state machine approach

       17.    Problems, Unsolved Problems and Problems in Concurrency
       18.    Hints for Computer System Design

       19.    Self-stabilizing systems in spite of distributed control
       20.    Wait-Free Synchronization

       21.    White Paper Introduction to IEEE 1588 & Transparent Clocks

       22.    Unreliable Failure Detectors for Reliable Distributed Systems
       23.    Life beyond Distributed Transactions:an Apostate’s Opinion(译zz)

       24.    Distributed Snapshots: Determining Global States of a Distributed System --Leslie Lamport

       25.    Virtual Time and Global States of Distributed Systems

       26.    Timestamps in Message-Passing Systems That Preserve the Partial Ordering

       27.    Fundamentals of Distributed Computing:A Practical Tour of Vector Clock Systems

       28.    Knowledge and Common Knowledge in a Distributed Environment

       29.    Understanding Failures in Petascale Computers

       30.    Why Do Internet services fail, and What Can Be Done About It?

       31.    End-To-End Arguments in System Design

       32.    Rethinking the Design of the Internet: The End-to-End Arguments vs. the Brave New World

       33.    The Design Philosophy of the DARPA Internet Protocols(译zz)

       34.    Uniform consensus is harder than consensus

       35.    Paxos made code - Implementing a high throughput Atomic Broadcast

       36.    RAFT:In Search of an Understandable Consensus Algorithm

分布式理论系列论文翻译集(合集)

三.数据库理论系列

0.    A Relational Model of Data for Large Shared Data Banks --E.F.Codd 1970

1.    SEQUEL:A Structured English Query Language 1974

2.    Implentation of a Structured English Query Language 1975

3.    A System R: Relational Approach to Database Management 1976

4.    Granularity of Locks and Degrees of Consistency in a Shared DataBase --Jim Gray 1976

5.    Access Path Selection in a RDBMS 1979

        6.    The Transaction Concept:Virtues and Limitations --Jim Gray

7.    2pc-2阶段提交:Notes on Data Base Operating Systems --Jim Gray

8.    3pc-3阶段提交:NONBLOCKING COMMIT PROTOCOLS

9.     MVCC:Multiversion Concurrency Control-Theory and Algorithms --1983

       10.    ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging-1992

11.    A Comparison of the Byzantine Agreement Problem and the Transaction Commit Problem --Jim Gray

       12.    A Formal Model of Crash Recovery in a Distributed System - Skeen, D. Stonebraker

13.    What Goes Around Comes Around - Michael Stonebraker, Joseph M. Hellerstein

       14.    Anatomy of a Database System -Joseph M. Hellerstein, Michael Stonebraker

       15.    Architecture of a Database System(译zz) -Joseph M. Hellerstein, Michael Stonebraker, James Hamilton

四.大规模存储与计算(NoSql理论系列)

0.      Towards Robust Distributed Systems:Brewer's 2000 PODC key notes

1.      CAP理论

2.      Harvest, Yield, and Scalable Tolerant Systems

3.      关于CAP 

4.      BASE模型:BASE an Acid Alternative

5.      最终一致性

6.      可扩展性设计模式

7.      可伸缩性原则

8.      NoSql生态系统

9.      scalability-availability-stability-patterns

10.    The 5 Minute Rule and the 5 Byte Rule (译)

        11.    The Five-Minute Rule Ten Years Later and Other Computer Storage Rules of Thumb

12.    The Five-Minute Rule 20 Years Later(and How Flash Memory Changes the Rules)

13.    关于MapReduce的争论

14.    MapReduce:一个巨大的倒退

15.    MapReduce:一个巨大的倒退(II)

16.    MapReduce和并行数据库,朋友还是敌人?(zz)

17.    MapReduce and Parallel DBMSs-Friends or Foes (译)

18.    MapReduce:A Flexible Data Processing Tool (译)

19.    A Comparision of Approaches to Large-Scale Data Analysis (译)

20.    MapReduce Hold不住?(zz)   

21.    Beyond MapReduce:图计算概览

22.    Map-Reduce-Merge: simplified relational data processing on large clusters

23.    MapReduce Online

24.    Graph Twiddling in a MapReduce World

25.    Spark: Cluster Computing with Working Sets

26.    Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

27.    Big Data Lambda Architecture

28.    The 8 Requirements of Real-Time Stream Processing

29.    The Log: What every software engineer should know about real-time data's unifying abstraction

30.    Lessons from Giant-Scale Services

五.基本算法和数据结构

1.      大数据量,海量数据处理方法总结

2.      大数据量,海量数据处理方法总结(续)

3.     Consistent Hashing And Random Trees

4.    Merkle Trees

5.    Scalable Bloom Filters

6.    Introduction to Distributed Hash Tables

7.    B-Trees and Relational Database Systems

8.    The log-structured merge-tree (译)

9.    lock free data structure

10.    Data Structures for Spatial Database

11.    Gossip

12.    lock free algorithm

13.    The Graph Traversal Pattern

六.基本系统和实践经验

1.    MySQL索引背后的数据结构及算法原理

2.    Dynamo: Amazon’s Highly Available Key-value Store (译zz)

3.    Cassandra - A Decentralized Structured Storage System (译zz)

4.    PNUTS: Yahoo!’s Hosted Data Serving Platform (译zz)

5.    Yahoo!的分布式数据平台PNUTS简介及感悟(zz)

6.    LevelDB:一个快速轻量级的key-value存储库(译)

7.    LevelDB理论基础

8.    LevelDB:实现(译)

9.    LevelDB SSTable格式详解

10.     LevelDB Bloom Filter实现

11.     Sawzall原理与应用

12.     Storm原理与实现

13.     Designs, Lessons and Advice from Building Large Distributed Systems --Jeff Dean

14.     Challenges in Building Large-Scale Information Retrieval Systems --Jeff Dean

15.      Experiences with MapReduce, an Abstraction for Large-Scale Computation --Jeff Dean

16.      Taming Service Variability,Building Worldwide Systems,and Scaling Deep Learning --Jeff Dean

17.      Large-Scale Data and Computation:Challenges and Opportunitis  --Jeff Dean

18.      Achieving Rapid Response Times in Large Online Services --Jeff Dean

19.      The Tail at Scale(译)  --Jeff Dean & Luiz André Barroso 

20.      How To Design A Good API and Why it Matters

21.      Event-Based Systems:Architect's Dream or Developer's Nightmare?

22.     Autopilot: Automatic Data Center Management

七.其他辅助系统

1.    The ganglia distributed monitoring system:design, implementation, and experience

2.    Chukwa: A large-scale monitoring system

3.    Scribe : a way to aggregate data and why not, to directly fill the HDFS?

4.    Benchmarking Cloud Serving Systems with YCSB

5.    Dynamo Dremel ZooKeeper Hive 简述

八.   Hadoop相关

0.     Hadoop Reading List

1.     The Hadoop Distributed File System(译)

2.     HDFS scalability:the limits to growth(译)

3.     Name-node memory size estimates and optimization proposal.

4.     HBase Architecture(译)

5.     HFile:A Block-Indexed File Format to Store Sorted Key-Value Pairs

6.     HFile V2

7.     Hive - A Warehousing Solution Over a Map-Reduce Framework

8.    Hive – A Petabyte Scale Data Warehouse Using Hadoop

9.    HIVE RCFile高效存储结构

10.   ZooKeeper: Wait-free coordination for Internet-scale systems

11.    The life and times of a zookeeper

12.    Avro: 大数据的数据格式(zz)

13.     Apache Hadoop Goes Realtime at Facebook (译)

14.     Hadoop平台优化综述(zz)

15.    The Anatomy of Hadoop I/O Pipeline (译)

16.     Hadoop公平调度器指南(zz)

17.    下一代Apache Hadoop MapReduce

18.    Apache Hadoop 0.23

.深入理解计算机系统

十.其他

On Computable Numbers with an Application to the Entscheidungsproblem-1936.5.28-A.M.Turing

The First Draft Report on the EDVAC-1945.6.30-John von Neumann

Reflections on Trusting Trust --Ken Thompson

Who Needs an Architect?

Go To statements considered harmfull --Edsger W.Dijkstra

No Silver Bullet Essence and Accidents of Software Engineering --Frederick P. Brooks

转载请注明作者:phylips@bmy 2011-4-30

出处:http://duanple.blog.163.com/blog/static/709717672011330101333271/

再推荐一个相关文章:http://blog.nosqlfan.com/html/1647.html

列举的大部分论文都是相同的,不过也有一些是各自独有的。

© 著作权归作者所有

共有 人打赏支持
m
粉丝 6
博文 41
码字总数 168307
作品 0
深圳
高级程序员
私信 提问
EMNLP2018最佳论文:Facebook 提升 11BLEU 的无监督机器翻译

雷锋网 AI 科技评论按:说到机器翻译,谷歌吃螃蟹并商用的 NMT、微软研究院媲美人类水平的 AI 翻译系统我们都做过比较多的报道,大家也都比较熟悉;不过它们都是需要监督的。谷歌自然可以使用...

WBLUE
09/20
0
0
我心中的2017年深度学习论文“奥斯卡”榜单

  来源:caches to caches   作者:Gregory J Stein   智能观 编译   【智能观】本文作者是麻省理工学院电气工程与计算机科学系的博士Gregory J Stein。   2017年有大量的学术论文...

一米智能观
01/04
0
0
ACL 2018 国内企业录用论文一览

ACL 是计算机语言学领域的顶级学术会议,ACL 2018 于 7 月 15 日-7 月 20 日在墨尔本召开。雷锋网(公众号:雷锋网)整理了多家国内企业的录用论文。 百度 2018 年,百度有多篇论文被 ACL 2018...

奕欣
07/18
0
0
2017年的10大AI顶会,风起云涌的故事

     在过去的一年中,从 AAAI 到 NIPS 很多学术顶会都在关注人工智能和机器学习,而它们的参会情况与论文提交情况很大程度上都体现了这个领域的活跃程度。在本文中,机器之心概览了 20...

深度学习
01/01
0
0
2017年的10大AI顶会,风起云涌的故事 | 机器之心年度盘点

  机器之心原创   作者:蒋思源、路雪      在过去的一年中,从 AAAI 到 NIPS 很多学术顶会都在关注人工智能和机器学习,而它们的参会情况与论文提交情况很大程度上都体现了这个领域...

机器之心
2017/12/31
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Qt那些事0.0.9

关于QThread,无F*k说的。文档说的差不多,更多的是看到很多人提到Qt开发者之一的“你TM的做错了(You're doing it wrong...)”,这位大哥2010年写的博客,下面评论很多,但主要还是集中在2...

Ev4n
33分钟前
1
0
constructor / destructor

_attribute__表示属性,是Clang提供的一种源码注释,方便开发者向编译器表达诉求,一般以__attribute__(*)的方式出现在代码中。为了方便使用,一些常用属性被定义成了宏,经常出现在系统头文...

HeroHY
34分钟前
1
0
大数据教程(7.6)shell脚本定时采集日志数据到hdfs

上一篇博客博主分享了hadoop内置rpc的使用案例,本节博主将为小伙伴们分享一个在实际生产中使用的日志搜集案例。前面的文章我们有讲到过用户点击流日志分析的流程,本节就是要完成这个分析流...

em_aaron
今天
1
0
wave和pcm互转

wav->pcm pcm->wav c#代码: using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using System.Drawing;using System.IO;using Sys......

whoisliang
今天
1
0
Win10:默认的图片打开应用,打开图片时速度明显很慢的解决办法

首先,我们随便地打开一张图片。然后,点击右上角的三个小点,最后点击弹出菜单最下面的“设置”。如下图: 在“设置”中找到下面的“人物”,把它关掉就好了。 原来,默认情况下,Win 10的图...

LivingInFHL
今天
3
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部