libevent -简单的异步IO介绍

原创
2016/04/26 23:23
阅读数 1.8K

A Tiny Introduction Asynchronous IO

大部初学程序员都是从阻塞IO调用开始的。如果一个IO调用是同步的,当你调用它,它不会返回,直到这个操作完成或者过去足够多的时间使你的网络栈自动放弃。 当你在一个TCP连接上调用connect(),例如,你的操作系统队列一个SYN包到达主机上TCP连接的另一边。它不会把控制权交给你,直到你接收到对面的一个SYN ACK包或者直到过去了足够多的时间以至于它决定放弃。

这有一个非常简单的例子使用阻塞网络调用。它去打开一个www.google.com的连接,发送一个简单的HTTP请求,然后打印响应到标准输出.(google大陆被墙,主机可以换成www.baidu.com)

例子:一个简单的阻塞HTTP 客户端

/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For gethostbyname */
#include <netdb.h>

#include <unistd.h>
#include <string.h>
#include <stdio.h>

int main(int c, char **v)
{
    const char query[] =
        "GET / HTTP/1.0\r\n"
        "Host: www.google.com\r\n"
        "\r\n";
    const char hostname[] = "www.google.com";
    struct sockaddr_in sin;
    struct hostent *h;
    const char *cp;
    int fd;
    ssize_t n_written, remaining;
    char buf[1024];

    /* Look up the IP address for the hostname.   Watch out; this isn't
       threadsafe on most platforms. */
    h = gethostbyname(hostname);
    if (!h) {
        fprintf(stderr, "Couldn't lookup %s: %s", hostname, hstrerror(h_errno));
        return 1;
    }
    if (h->h_addrtype != AF_INET) {
        fprintf(stderr, "No ipv6 support, sorry.");
        return 1;
    }

    /* Allocate a new socket */
    fd = socket(AF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return 1;
    }

    /* Connect to the remote host. */
    sin.sin_family = AF_INET;
    sin.sin_port = htons(80);
    sin.sin_addr = *(struct in_addr*)h->h_addr;
    if (connect(fd, (struct sockaddr*) &sin, sizeof(sin))) {
        perror("connect");
        close(fd);
        return 1;
    }

    /* Write the query. */
    /* XXX Can send succeed partially? */
    cp = query;
    remaining = strlen(query);
    while (remaining) {
      n_written = send(fd, cp, remaining, 0);
      if (n_written <= 0) {
        perror("send");
        return 1;
      }
      remaining -= n_written;
      cp += n_written;
    }

    /* Get an answer back. */
    while (1) {
        ssize_t result = recv(fd, buf, sizeof(buf), 0);
        if (result == 0) {
            break;
        } else if (result < 0) {
            perror("recv");
            close(fd);
            return 1;
        }
        fwrite(buf, 1, result, stdout);
    }

    close(fd);
    return 0;
}

上述的代码所有的网络调用都是阻塞的:gethostbyname函数直到www.google.com解析成功或者失败后才会返回;connect函数直到连接成功才返回;recv函数直到接收到数据或者一个关闭才会返回;send函数直到最后刷新它的输出到内核写缓冲区。

现在,IO阻塞并不是不幸的。在此期间如果你的程序不去做其他事情,那么对你来说阻塞IO将工作的很好。 但是,假设你需要写一个程序去处理同时处理多个连接。让我们来具体的举一个例子:加入你想从两个连接中读取输入,但是你不知道那个连接将第一个输入。你不能说

坏例子

/*这些代码不能工作*/
char buf[1024];
int i, n;
while (i_still_want_to_read()) {
    for (i=0; i<n_sockets; ++i) {
        n = recv(fd[i], buf, sizeof(buf), 0);
        if (n==0)
            handle_close(fd[i]);
        else if (n<0)
            handle_error(fd[i], errno);
        else
            handle_input(fd[i], buf, n);
    }
}

当有数据在fd[2]上到来时,你的程序不能读取fd[2]上的数据,在fd[0]和fd[1]上的数据读完之前。

有时候人们为了解决这个问题,采用多线程,或者多进程服务。其中一个最简单的方法就是用多线程,每一个线程去处理一个连接。这样每一个连接都有一个自己的进程,一个连接的IO阻塞调用等待不会影响其他连接的进程阻塞。

这还有另一个例子程序。这是一个微不足道的服务程序,监听TCP连接端口为40713,从输入一行,读取数据,经过ROT13处理后的数据写出。这里为每一个到来的连接调用Unix的fork()来创建一个新的进程。

例子:ROT13分支出来的server

/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>

#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#define MAX_LINE 16384

char rot13_char(char c)
{
    /* We don't want to use isalpha here; setting the locale would change
     * which characters are considered alphabetical. */
    if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

void child(int fd)
{
    char outbuf[MAX_LINE+1];
    size_t outbuf_used = 0;
    ssize_t result;

    while (1) {
        char ch;
        result = recv(fd, &ch, 1, 0);
        if (result == 0) {
            break;
        } else if (result == -1) {
            perror("read");
            break;
        }

        /* We do this test to keep the user from overflowing the buffer. */
        if (outbuf_used < sizeof(outbuf)) {
            outbuf[outbuf_used++] = rot13_char(ch);
        }

        if (ch == '\n') {
            send(fd, outbuf, outbuf_used, 0);
            outbuf_used = 0;
            continue;
        }
    }
}

void
run(void)
{
    int listener;
    struct sockaddr_in sin;

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    listener = socket(AF_INET, SOCK_STREAM, 0);

#ifndef WIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }



    while (1) {
        struct sockaddr_storage ss;
        socklen_t slen = sizeof(ss);
        int fd = accept(listener, (struct sockaddr*)&ss, &slen);
        if (fd < 0) {
            perror("accept");
        } else {
            if (fork() == 0) {
                child(fd);
                exit(0);
            }
        }
    }
}

int main(int c, char **v)
{
    run();
    return 0;
}

所以,我们有一个完美的解决方案去同时处理多连接?那我们现在可以停止写这本书,然后去干其他事情了吗?其实并不是.首先,进程的创建(或者线程的创建)在某些平台上是相当昂贵的。在现实生活中,你想用一个线程池,取代去创建新进程。但从根本上来说,线程不会像你想象的那么多。如果你的程序同时需要处理成千上万个连接,处理成千上万的线程是不会高效的,因为CPU处理器只能处理几个线程。

但是线程没有解决多个连接,怎么办? 在Unix套接字中,设置你的sockets非阻塞。在Unix中通过下面函数设置。

fcntl(fd, F_SETFL, O_NONBLOCK)

文件描述符fd就是socket函数创建的。一旦你设置了socket 描述符fd为非阻塞,当你让网络去调用fd,调用操作将立即完成或者返回一个错误标明"我不能现在无法取得任何进展,请重试"。所以我们两个socket例子可以写成这样:

坏例子:忙轮询所有套接字

/* This will work, but the performance will be unforgivably bad. */
int i, n;
char buf[1024];
for (i=0; i < n_sockets; ++i)
    fcntl(fd[i], F_SETFL, O_NONBLOCK);

while (i_still_want_to_read()) {
    for (i=0; i < n_sockets; ++i) {
        n = recv(fd[i], buf, sizeof(buf), 0);
        if (n == 0) {
            handle_close(fd[i]);
        } else if (n < 0) {
            if (errno == EAGAIN)
                 ; /* The kernel didn't have any data for us to read. */
            else
                 handle_error(fd[i], errno);
         } else {
            handle_input(fd[i], buf, n);
         }
    }
}

现在,我们使用非阻塞的套接字,上面的代码将会工作,但是那只是勉强的工作。性能将会很糟糕,主要有两个原因。第一,当连接上没有数据去读的,将会一直轮询下去,你的CPU将整个被占用。第二,如果使用这种方法试着处理一个或者两个连接时,你将为每一个做一个内核调用,不管它是不是有数据给你。所以我们需要一种告诉内核"等待那些套接字有数据给我,并告诉我那些已经准备好了"。

旧的解决方案是人们一直使用select()函数解决这个问题.select()函数调用三套fds(以位数组方式实现):一个读,一个写,另一个异常处理。它等待,直到一个套接字从其中一个集合准备好,并且设置了集合包含准备使用的套接字。

这我们还有一个例子,使用select实现:

例子:使用select

/* If you only have a couple dozen fds, this version won't be awful */
fd_set readset;
int i, n;
char buf[1024];

while (i_still_want_to_read()) {
    int maxfd = -1;
    FD_ZERO(&readset);

    /* Add all of the interesting fds to readset */
    for (i=0; i < n_sockets; ++i) {
         if (fd[i]>maxfd) maxfd = fd[i];
         FD_SET(fd[i], &readset);
    }

    /* Wait until one or more fds are ready to read */
    select(maxfd+1, &readset, NULL, NULL, NULL);

    /* Process all of the fds that are still set in readset */
    for (i=0; i < n_sockets; ++i) {
        if (FD_ISSET(fd[i], &readset)) {
            n = recv(fd[i], buf, sizeof(buf), 0);
            if (n == 0) {
                handle_close(fd[i]);
            } else if (n < 0) {
                if (errno == EAGAIN)
                     ; /* The kernel didn't have any data for us to read. */
                else
                     handle_error(fd[i], errno);
             } else {
                handle_input(fd[i], buf, n);
             }
        }
    }
}

这有一个用select实现的POT13 服务端

例子:select()实现的POT13服务器

/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>
/* for select */
#include <sys/select.h>

#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

#define MAX_LINE 16384

char
rot13_char(char c)
{
    /* We don't want to use isalpha here; setting the locale would change
     * which characters are considered alphabetical. */
    if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

struct fd_state {
    char buffer[MAX_LINE];
    size_t buffer_used;

    int writing;
    size_t n_written;
    size_t write_upto;
};

struct fd_state *
alloc_fd_state(void)
{
    struct fd_state *state = malloc(sizeof(struct fd_state));
    if (!state)
        return NULL;
    state->buffer_used = state->n_written = state->writing =
        state->write_upto = 0;
    return state;
}

void
free_fd_state(struct fd_state *state)
{
    free(state);
}

void
make_nonblocking(int fd)
{
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

int
do_read(int fd, struct fd_state *state)
{
    char buf[1024];
    int i;
    ssize_t result;
    while (1) {
        result = recv(fd, buf, sizeof(buf), 0);
        if (result <= 0)
            break;

        for (i=0; i < result; ++i)  {
            if (state->buffer_used < sizeof(state->buffer))
                state->buffer[state->buffer_used++] = rot13_char(buf[i]);
            if (buf[i] == '\n') {
                state->writing = 1;
                state->write_upto = state->buffer_used;
            }
        }
    }

    if (result == 0) {
        return 1;
    } else if (result < 0) {
        if (errno == EAGAIN)
            return 0;
        return -1;
    }

    return 0;
}

int
do_write(int fd, struct fd_state *state)
{
    while (state->n_written < state->write_upto) {
        ssize_t result = send(fd, state->buffer + state->n_written,
                              state->write_upto - state->n_written, 0);
        if (result < 0) {
            if (errno == EAGAIN)
                return 0;
            return -1;
        }
        assert(result != 0);

        state->n_written += result;
    }

    if (state->n_written == state->buffer_used)
        state->n_written = state->write_upto = state->buffer_used = 0;

    state->writing = 0;

    return 0;
}

void
run(void)
{
    int listener;
    struct fd_state *state[FD_SETSIZE];
    struct sockaddr_in sin;
    int i, maxfd;
    fd_set readset, writeset, exset;

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    for (i = 0; i < FD_SETSIZE; ++i)
        state[i] = NULL;

    listener = socket(AF_INET, SOCK_STREAM, 0);
    make_nonblocking(listener);

#ifndef WIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }

    FD_ZERO(&readset);
    FD_ZERO(&writeset);
    FD_ZERO(&exset);

    while (1) {
        maxfd = listener;

        FD_ZERO(&readset);
        FD_ZERO(&writeset);
        FD_ZERO(&exset);

        FD_SET(listener, &readset);

        for (i=0; i < FD_SETSIZE; ++i) {
            if (state[i]) {
                if (i > maxfd)
                    maxfd = i;
                FD_SET(i, &readset);
                if (state[i]->writing) {
                    FD_SET(i, &writeset);
                }
            }
        }

        if (select(maxfd+1, &readset, &writeset, &exset, NULL) < 0) {
            perror("select");
            return;
        }

        if (FD_ISSET(listener, &readset)) {
            struct sockaddr_storage ss;
            socklen_t slen = sizeof(ss);
            int fd = accept(listener, (struct sockaddr*)&ss, &slen);
            if (fd < 0) {
                perror("accept");
            } else if (fd > FD_SETSIZE) {
                close(fd);
            } else {
                make_nonblocking(fd);
                state[fd] = alloc_fd_state();
                assert(state[fd]);/*XXX*/
            }
        }

        for (i=0; i < maxfd+1; ++i) {
            int r = 0;
            if (i == listener)
                continue;

            if (FD_ISSET(i, &readset)) {
                r = do_read(i, state[i]);
            }
            if (r == 0 && FD_ISSET(i, &writeset)) {
                r = do_write(i, state[i]);
            }
            if (r) {
                free_fd_state(state[i]);
                state[i] = NULL;
                close(i);
            }
        }
    }
}

int
main(int c, char **v)
{
    setvbuf(stdout, NULL, _IONBF, 0);

    run();
    return 0;
}

但是我们并没有做完。因为生成和读select()位数组所消耗的事件将与select提供的最大的fd成正比。当有大量的套接字的时候调用'select()'是很糟糕的。

不同的操作系统提供不同替换函数让你选择,这些包括poll(),epoll(),kqueue(),evports/dev/poll.这些的比select的性能更佳,除poll()之外,其他的在添加一个套接字、删除一个套接字和通知一个套接字IO已经准备就绪的时间复杂度均为O(1)。

不幸的是,没有一个有效的接口作为一个标准。Linux 有epoll(),BSD系统中有kqueue(),Solaris系统中有evports 和 /dev/poll等,不同的系统有不同的实现。所以,如果你想写一个便捷的性能高的异步应用程序,你需要有一个包含这些抽象接口的统一接口,来根据不同的平台提供有效的解决。

这里有一个底层的Libevent API可以为你提供这个统一接口。它提供一个统一的接口来为各种select()替代,使用最有效的版本在任何计算机上运行。

这里还有另一个版本的异步POT13服务器实现.现在我们用libevent 2 来取代select().请注意,fd_sets 结构现在已经消失了:相反的,我们连接和分离事件通过一个event_base结构,那些可能根据select(),poll(),epoll(),kqueue()等 实现的。

例子: 一个底层的libevent 实现的POT13 服务器

/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>

#include <event2/event.h>

#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

#define MAX_LINE 16384

void do_read(evutil_socket_t fd, short events, void *arg);
void do_write(evutil_socket_t fd, short events, void *arg);

char
rot13_char(char c)
{
    /* We don't want to use isalpha here; setting the locale would change
     * which characters are considered alphabetical. */
    if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

struct fd_state {
    char buffer[MAX_LINE];
    size_t buffer_used;

    size_t n_written;
    size_t write_upto;

    struct event *read_event;
    struct event *write_event;
};

struct fd_state *
alloc_fd_state(struct event_base *base, evutil_socket_t fd)
{
    struct fd_state *state = malloc(sizeof(struct fd_state));
    if (!state)
        return NULL;
    state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state);
    if (!state->read_event) {
        free(state);
        return NULL;
    }
    state->write_event =
        event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state);

    if (!state->write_event) {
        event_free(state->read_event);
        free(state);
        return NULL;
    }

    state->buffer_used = state->n_written = state->write_upto = 0;

    assert(state->write_event);
    return state;
}

void
free_fd_state(struct fd_state *state)
{
    event_free(state->read_event);
    event_free(state->write_event);
    free(state);
}

void
do_read(evutil_socket_t fd, short events, void *arg)
{
    struct fd_state *state = arg;
    char buf[1024];
    int i;
    ssize_t result;
    while (1) {
        assert(state->write_event);
        result = recv(fd, buf, sizeof(buf), 0);
        if (result <= 0)
            break;

        for (i=0; i < result; ++i)  {
            if (state->buffer_used < sizeof(state->buffer))
                state->buffer[state->buffer_used++] = rot13_char(buf[i]);
            if (buf[i] == '\n') {
                assert(state->write_event);
                event_add(state->write_event, NULL);
                state->write_upto = state->buffer_used;
            }
        }
    }

    if (result == 0) {
        free_fd_state(state);
    } else if (result < 0) {
        if (errno == EAGAIN) // XXXX use evutil macro
            return;
        perror("recv");
        free_fd_state(state);
    }
}

void
do_write(evutil_socket_t fd, short events, void *arg)
{
    struct fd_state *state = arg;

    while (state->n_written < state->write_upto) {
        ssize_t result = send(fd, state->buffer + state->n_written,
                              state->write_upto - state->n_written, 0);
        if (result < 0) {
            if (errno == EAGAIN) // XXX use evutil macro
                return;
            free_fd_state(state);
            return;
        }
        assert(result != 0);

        state->n_written += result;
    }

    if (state->n_written == state->buffer_used)
        state->n_written = state->write_upto = state->buffer_used = 1;

    event_del(state->write_event);
}

void
do_accept(evutil_socket_t listener, short event, void *arg)
{
    struct event_base *base = arg;
    struct sockaddr_storage ss;
    socklen_t slen = sizeof(ss);
    int fd = accept(listener, (struct sockaddr*)&ss, &slen);
    if (fd < 0) { // XXXX eagain??
        perror("accept");
    } else if (fd > FD_SETSIZE) {
        close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */
    } else {
        struct fd_state *state;
        evutil_make_socket_nonblocking(fd);
        state = alloc_fd_state(base, fd);
        assert(state); /*XXX err*/
        assert(state->write_event);
        event_add(state->read_event, NULL);
    }
}

void
run(void)
{
    evutil_socket_t listener;
    struct sockaddr_in sin;
    struct event_base *base;
    struct event *listener_event;

    base = event_base_new();
    if (!base)
        return; /*XXXerr*/

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    listener = socket(AF_INET, SOCK_STREAM, 0);
    evutil_make_socket_nonblocking(listener);

#ifndef WIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }

    listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
    /*XXX check it */
    event_add(listener_event, NULL);

    event_base_dispatch(base);
}

int
main(int c, char **v)
{
    setvbuf(stdout, NULL, _IONBF, 0);

    run();
    return 0;
}

(代码中有些地方需要注意: sockets的类型'int', 我们使用evutil_socket_t类型来替代。 调用evutil_make_socket_nonblocking 来替代fcntl(O_NONBLOCK) 设置socket非阻塞. 这些变化是我们的代码兼容Win32 的网络API)

怎么样,方便吧?(在windows 上会怎么样呢?)

你可能已经注意到了,我们的代码开始变的高效,也变得比较复杂了。我们不需要为每个连接管理缓冲区,每一个进程会单独分配一个堆栈。我们不需要明确的跟踪哪一个套接字是正在读还是正在写:这些隐含在我们代码里。我们不需要一个设计去跟踪多少操作已经完成:我们仅仅使用循环和栈变量。

此外,如果你在Windows上有丰富的网络编程经验,你会发现使用上面的例子不会达到很好的性能。在Windows 上,最快的异步IO方式不是使用select()这样的接口:它是使用IOCP(IO Completion Ports[IO完成端口])API.不同其他的最快的网络API,IOCP不会通知你的程序,当一个套接字已经准备去操作,而是当你的操作执行完成以后才通知你。相反的,程序告诉了Windows 网络栈,去开始一个网络操作,IOCP在程序操作完成后会通知。

幸运是 Libevent 2 的bufferevents接口决绝了这些缺陷:它让程序写起来非常的简单,提供一个接口可以高效的运行在Windows 和 Unix上。

这最后一次展示POT13服务器,通过bufferevents API

例子:一个用libevent实现的很简单的POT13服务端

/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>

#include <event2/event.h>
#include <event2/buffer.h>
#include <event2/bufferevent.h>

#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

#define MAX_LINE 16384

void do_read(evutil_socket_t fd, short events, void *arg);
void do_write(evutil_socket_t fd, short events, void *arg);

char
rot13_char(char c)
{
    /* We don't want to use isalpha here; setting the locale would change
     * which characters are considered alphabetical. */
    if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

void
readcb(struct bufferevent *bev, void *ctx)
{
    struct evbuffer *input, *output;
    char *line;
    size_t n;
    int i;
    input = bufferevent_get_input(bev);
    output = bufferevent_get_output(bev);

    while ((line = evbuffer_readln(input, &n, EVBUFFER_EOL_LF))) {
        for (i = 0; i < n; ++i)
            line[i] = rot13_char(line[i]);
        evbuffer_add(output, line, n);
        evbuffer_add(output, "\n", 1);
        free(line);
    }

    if (evbuffer_get_length(input) >= MAX_LINE) {
        /* Too long; just process what there is and go on so that the buffer
         * doesn't grow infinitely long. */
        char buf[1024];
        while (evbuffer_get_length(input)) {
            int n = evbuffer_remove(input, buf, sizeof(buf));
            for (i = 0; i < n; ++i)
                buf[i] = rot13_char(buf[i]);
            evbuffer_add(output, buf, n);
        }
        evbuffer_add(output, "\n", 1);
    }
}

void
errorcb(struct bufferevent *bev, short error, void *ctx)
{
    if (error & BEV_EVENT_EOF) {
        /* connection has been closed, do any clean up here */
        /* ... */
    } else if (error & BEV_EVENT_ERROR) {
        /* check errno to see what error occurred */
        /* ... */
    } else if (error & BEV_EVENT_TIMEOUT) {
        /* must be a timeout event handle, handle it */
        /* ... */
    }
    bufferevent_free(bev);
}

void
do_accept(evutil_socket_t listener, short event, void *arg)
{
    struct event_base *base = arg;
    struct sockaddr_storage ss;
    socklen_t slen = sizeof(ss);
    int fd = accept(listener, (struct sockaddr*)&ss, &slen);
    if (fd < 0) {
        perror("accept");
    } else if (fd > FD_SETSIZE) {
        close(fd);
    } else {
        struct bufferevent *bev;
        evutil_make_socket_nonblocking(fd);
        bev = bufferevent_socket_new(base, fd, BEV_OPT_CLOSE_ON_FREE);
        bufferevent_setcb(bev, readcb, NULL, errorcb, NULL);
        bufferevent_setwatermark(bev, EV_READ, 0, MAX_LINE);
        bufferevent_enable(bev, EV_READ|EV_WRITE);
    }
}

void
run(void)
{
    evutil_socket_t listener;
    struct sockaddr_in sin;
    struct event_base *base;
    struct event *listener_event;

    base = event_base_new();
    if (!base)
        return; /*XXXerr*/

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    listener = socket(AF_INET, SOCK_STREAM, 0);
    evutil_make_socket_nonblocking(listener);

#ifndef WIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }

    listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
    /*XXX check it */
    event_add(listener_event, NULL);

    event_base_dispatch(base);
}

int
main(int c, char **v)
{
    setvbuf(stdout, NULL, _IONBF, 0);

    run();
    return 0;
}

这一切真的很有效吗?

在这里写一段XXX的效率,对于libevnet来说真的已经过时了。


英文原文链接,出于学习的目的翻译所以翻译此文。在翻译过程中限于个人水平有限,有些地方有些缺陷,还请发现后及时与我联系(mjrao@foxmail.com)或者fork 提交您的pull request。 谢谢!

展开阅读全文
打赏
1
8 收藏
分享
加载中
更多评论
打赏
0 评论
8 收藏
1
分享
返回顶部
顶部