文档章节

2. C基础知识

marjey
 marjey
发布于 2017/01/22 11:16
字数 5288
阅读 13
收藏 0

C 程序主要包括以下部分:

  • 预处理器指令
  • 函数
  • 变量
  • 语句 & 表达式
  • 注释

来看看以下这个程序:

#include <stdio.h>

int main() {
    printf("Hello, World! \n");
    return 0;
}

接下来我们讲解一下上面这段程序:

  1. 程序的第一行 #include <stdio.h> 是预处理器指令,告诉 C 编译器在实际编译之前要包含 stdio.h 文件。
  2. 下一行 int main() 是主函数,程序从这里开始执行。
  3. 下一行 /*...*/ 将会被编译器忽略,这里放置程序的注释内容。它们被称为程序的注释。
  4. 下一行 printf(...) 是 C 中另一个可用的函数,会在屏幕上显示消息 "Hello, World!"。
  5. 下一行 return 0; 终止 main() 函数,并返回值 0。
  • C数据类型

  • 整数类型

注意,各种类型的存储大小与系统位数有关,但目前通用的以64位系统为主。

以下列出了32位系统与64位系统的存储大小的差别(windows 相同):

为了得到某个类型或某个变量在特定平台上的准确大小,您可以使用 sizeof 运算符。表达式 sizeof(type) 得到对象或类型的存储字节大小。下面的实例演示了获取 int 类型的大小:

#include <stdio.h>

int main() {
    printf("int 字节大小: %lu \n", sizeof(int));

    return 0;
}

当您在 Linux 上编译并执行上面的程序时,它会产生下列结果:

int 字节大小 : 4

浮点类型

类型 存储大小 值范围 精度
float 4 字节 1.2E-38 到 3.4E+38 6 位小数
double 8 字节 2.3E-308 到 1.7E+308 15 位小数
long double 16 字节 3.4E-4932 到 1.1E+4932 19 位小数

 

#include <stdio.h>
#include <float.h>

int main()
{
    printf("float 存储最大字节数 : %lu \n", sizeof(float));
    printf("float 最小值: %E\n", FLT_MIN );
    printf("float 最大值: %E\n", FLT_MAX );
    printf("精度值: %d\n", FLT_DIG );

    return 0;
}
float 存储最大字节数 : 4 
float 最小值: 1.175494E-38
float 最大值: 3.402823E+38
精度值: 6

void 类型

C 变量

变量其实只不过是程序可操作的存储区的名称。C 中每个变量都有特定的类型,类型决定了变量存储的大小和布局,该范围内的值都可以存储在内存中,运算符可应用于变量上。

变量的名称可以由字母、数字和下划线字符组成。它必须以字母或下划线开头。大写字母和小写字母是不同的,因为 C 是大小写敏感的。有以下几种基本的变量类型:

声明变量:

int    i, j, k;
char   c, ch;
float  f, salary;
double d;

赋值

extern int d = 3, f = 5;    // d 和 f 的声明, 这就是单纯的声明
int d = 3, f = 5;           // 定义并初始化 d 和 f
byte z = 22;                // 定义并初始化 z
char x = 'x';               // 变量 x 的值为 'x'

C 常量

整数常量

整数常量可以是十进制、八进制或十六进制的常量。前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,不带前缀则默认表示十进制。

整数常量也可以带一个后缀,后缀是 U 和 L 的组合,U 表示无符号整数(unsigned),L 表示长整数(long)。后缀可以是大写,也可以是小写,U 和 L 的顺序任意。

下面列举几个整数常量的实例:

212         /* 合法的 */
215u        /* 合法的 */
0xFeeL      /* 合法的 */
078         /* 非法的:8 不是八进制的数字 */
032UU       /* 非法的:不能重复后缀 */
85         /* 十进制 */
0213       /* 八进制 */
0x4b       /* 十六进制 */
30         /* 整数 */
30u        /* 无符号整数 */
30l        /* 长整数 */
30ul       /* 无符号长整数 */

浮点常量

浮点常量由整数部分、小数点、小数部分和指数部分组成。您可以使用小数形式或者指数形式来表示浮点常量。

当使用小数形式表示时,必须包含整数部分、小数部分,或同时包含两者。当使用指数形式表示时, 必须包含小数点、指数,或同时包含两者。带符号的指数是用 e 或 E 引入的。

下面列举几个浮点常量的实例:

3.14159       /* 合法的 */
314159E-5L    /* 合法的 */
510E          /* 非法的:不完整的指数 */
210f          /* 非法的:没有小数或指数 */
.e55          /* 非法的:缺少整数或分数 */

字符常量

字符常量是括在单引号中,例如,'x' 可以存储在 char 类型的简单变量中。

字符常量可以是一个普通的字符(例如 'x')、一个转义序列(例如 '\t'),或一个通用的字符(例如 '\u02C0')。

在 C 中,有一些特定的字符,当它们前面有反斜杠时,它们就具有特殊的含义,被用来表示如换行符(\n)或制表符(\t)等。下表列出了一些这样的转义序列码:

转义序列 含义
\\ \ 字符
\' ' 字符
\" " 字符
\? ? 字符
\a 警报铃声
\b 退格键
\f 换页符
\n 换行符
\r 回车
\t 水平制表符
\v 垂直制表符
\ooo 一到三位的八进制数
\xhh . . . 一个或多个数字的十六进制数

 

字符串常量

字符串字面值或常量是括在双引号 "" 中的。一个字符串包含类似于字符常量的字符:普通的字符、转义序列和通用的字符。

您可以使用空格做分隔符,把一个很长的字符串常量进行分行。

下面的实例显示了一些字符串常量。下面这三种形式所显示的字符串是相同的。

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

定义常量

在 C 中,有两种简单的定义常量的方式:

  1. 使用 #define 预处理器。
  2. 使用 const 关键字。

#define 预处理器

下面是使用 #define 预处理器定义常量的形式:

#define identifier value
#include <stdio.h>

#define LENGTH 10
#define WIDTH  5
#define NEWLINE '\n'

int main() {
    int area;
    area = LENGTH * WIDTH;
    printf("value of area : %d", area);
    printf("%c", NEWLINE);
    return 0;
}

const 关键字

您可以使用 const 前缀声明指定类型的常量,如下所示:

const type variable = value;
#include <stdio.h>

int main() {
    const int LENGTH = 10;
    const int WIDTH = 5;
    const char NEWLINE = '\n';
  
    int area;

    area = LENGTH * WIDTH;
    printf("value of area : %d", area);
    printf("%c", NEWLINE);

    return 0;
}

定义为const关键字的变量不可再更改。

C 存储类(作用域)

存储类定义 C 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C 程序中可用的存储类:

  • auto
  • register
  • static
  • extern

auto 存储类

auto 存储类是所有局部变量默认的存储类。

{
   int mount;
   auto int month;
}

上面的实例定义了两个带有相同存储类的变量,auto 只能用在函数内,即 auto 只能修饰局部变量。

register 存储类

register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 '&' 运算符(因为它没有内存位置)。

{
  register int  miles;
}

寄存器只用于需要快速访问的变量,比如计数器。还应注意的是,定义 'register' 并不意味着变量将被存储在寄存器中,它意味着变量可能存储在寄存器中,这取决于硬件和实现的限制。

static 存储类(同java,程序执行始终存在)

static 存储类指示编译器在程序的生命周期内保持局部变量的存在而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。

static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。

在 C 编程中,当 static 用在类数据成员上时,会导致仅有一个该成员的副本被类的所有对象共享。

#include <stdio.h>

/* 函数声明 */
void func(void);

static int count = 5; /* 全局变量 */

main() {
    while (count--) {
        func();
    }
}

/* 函数定义 */
void func(void) {
    static int i = 5; /* 局部静态变量 */
    i++;
    printf("i is %d and count is %d\n", i, count);
}

extern 存储类

extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。当您使用 'extern' 时,对于无法初始化的变量,会把变量名指向一个之前定义过的存储位置。

当您有多个文件且定义了一个可以在其他文件中使用的全局变量或函数时,可以在其他文件中使用 extern 来得到已定义的变量或函数的引用。可以这么理解,extern 是用来在另一个文件中声明一个全局变量或函数。

extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候,如下所示:

#include <stdio.h> int count ; extern void write_extern(); main() { count = 5; write_extern(); }

#include <stdio.h> extern int count; void write_extern(void) { printf("count is %d\n", count); }

杂项运算符 ↦ sizeof & 三元

运算符 描述 实例
sizeof() 返回变量的大小。 sizeof(a) 将返回 4,其中 a 是整数。
& 返回变量的地址。 &a; 将给出变量的实际地址。
* 指向一个变量。 *a; 将指向一个变量。
? : 条件表达式 如果条件为真 ? 则值为 X : 否则值为 Y

 

#include <stdio.h>

int main()
{
    int a = 4;
    short b;
    double c;
    int* ptr;

    /* sizeof 运算符实例 */
    printf("Line 1 - 变量 a 的大小 = %lu\n", sizeof(a) );
    printf("Line 2 - 变量 b 的大小 = %lu\n", sizeof(b) );
    printf("Line 3 - 变量 c 的大小 = %lu\n", sizeof(c) );

    /* & 和 * 运算符实例 */
    ptr = &a;    /* 'ptr' 现在包含 'a' 的地址 */
    printf("a 的值是 %d\n", a);
    printf("*ptr 是 %d\n", *ptr);

    /* 三元运算符实例 */
    a = 10;
    b = (a == 1) ? 20: 30;
    printf( "b 的值是 %d\n", b );

    b = (a == 10) ? 20: 30;
    printf( "b 的值是 %d\n", b );}

C 函数

函数是一组一起执行一个任务的语句。每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数。

您可以把代码划分到不同的函数中。如何划分代码到不同的函数中是由您来决定的,但在逻辑上,划分通常是根据每个函数执行一个特定的任务来进行的。

函数声明告诉编译器函数的名称、返回类型和参数。函数定义提供了函数的实际主体。

C 标准库提供了大量的程序可以调用的内置函数。例如,函数 strcat() 用来连接两个字符串,函数 memcpy() 用来复制内存到另一个位置。

函数还有很多叫法,比如方法、子例程或程序,等等。

定义函数

C 语言中的函数定义的一般形式如下:

return_type function_name( parameter list )
{
   body of the function
}

在 C 语言中,函数由一个函数头和一个函数主体组成。下面列出一个函数的所有组成部分:

  • 返回类型:一个函数可以返回一个值。return_type 是函数返回的值的数据类型。有些函数执行所需的操作而不返回值,在这种情况下,return_type 是关键字 void
  • 函数名称:这是函数的实际名称。函数名和参数列表一起构成了函数签名。
  • 参数:参数就像是占位符。当函数被调用时,您向参数传递一个值,这个值被称为实际参数。参数列表包括函数参数的类型、顺序、数量。参数是可选的,也就是说,函数可能不包含参数。
  • 函数主体:函数主体包含一组定义函数执行任务的语句。

C 数组

C 语言支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。

数组的声明并不是声明一个个单独的变量,比如 number0、number1、...、number99,而是声明一个数组变量,比如 numbers,然后使用 numbers[0]、numbers[1]、...、numbers[99] 来代表一个个单独的变量。数组中的特定元素可以通过索引访问。

所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素。

double balance[10];
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

大括号 { } 之间的值的数目不能大于我们在数组声明时在方括号 [ ] 中指定的元素数目。

如果您省略掉了数组的大小,数组的大小则为初始化时元素的个数。因此,如果:

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

您将创建一个数组,它与前一个实例中所创建的数组是完全相同的。下面是一个为数组中某个元素赋值的实例:

balance[4] = 50.0;

C 指针

学习 C 语言的指针既简单又有趣。通过指针,可以简化一些 C 编程任务的执行,还有一些任务,如动态内存分配,没有指针是无法执行的。所以,想要成为一名优秀的 C 程序员,学习指针是很有必要的。

正如您所知道的,每一个变量都有一个内存位置,每一个内存位置都定义了可使用连字号(&)运算符访问的地址,它表示了在内存中的一个地址。请看下面的实例,它将输出定义的变量地址:

#include <stdio.h>

int main() {
    int var1;
    char var2[10];

    printf("var1 变量的地址: %x\n", &var1);
    printf("var2 变量的地址: %d\n", &var2);

    return 0;
}

什么是指针?(指向另一个变量地址的变量(非另一变量的值))

&变量名就表示地址。

指针是一个变量,其值为另一个变量的地址,即,内存位置的直接地址。就像其他变量或常量一样,您必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:

type *var-name;

在这里,type 是指针的基类型,它必须是一个有效的 C 数据类型,var-name 是指针变量的名称。用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:

int    *ip;    /* 一个整型的指针 */
double *dp;    /* 一个 double 型的指针 */
float  *fp;    /* 一个浮点型的指针 */
char   *ch     /* 一个字符型的指针 */

所有指针的值的实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,都是一样的,都是一个代表内存地址的长的十六进制数。不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。

 

如何使用指针?

使用指针时会频繁进行以下几个操作:定义一个指针变量、把变量地址赋值给指针、访问指针变量中可用地址的值。这些是通过使用一元运算符 * 来返回位于操作数所指定地址的变量的值。下面的实例涉及到了这些操作:

#include <stdio.h>

int main() {
    int var = 20;   /* 实际变量的声明 */
    int *ip;        /* 指针变量的声明 */

    ip = &var;  /* 在指针变量中存储 var 的地址 */

    printf("Address of var variable: %x\n", &var);

    /* 在指针变量中存储的地址 */
    printf("Address stored in ip variable: %x\n", ip);

    /* 使用指针访问值 */
    printf("Value of *ip variable: %d\n", *ip);

    return 0;
}

C 中的 NULL 指针

在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为指针。

NULL 指针是一个定义在标准库中的值为零的常量。请看下面的程序:

#include <stdio.h>

int main ()
{
    int  *ptr = NULL;

    printf("ptr 的值是 %x\n", ptr  );

    return 0;
}

在大多数的操作系统上,程序不允许访问地址为 0 的内存,因为该内存是操作系统保留的。然而,内存地址 0 有特别重要的意义,它表明该指针不指向一个可访问的内存位置。但按照惯例,如果指针包含空值(零值),则假定它不指向任何东西。

如需检查一个空指针,您可以使用 if 语句,如下所示:

if(ptr)     /* 如果 p 非空,则完成 */
if(!ptr)    /* 如果 p 为空,则完成 */

C 指针详解

C 指针的算术运算

C 指针是一个用数值表示的地址。因此,您可以对指针执行算术运算。可以对指针进行四种算术运算:++、--、+、-。

假设 ptr 是一个指向地址 1000 的整型指针,是一个 32 位的整数,让我们对该指针执行下列的算术运算:

ptr++

在执行完上述的运算之后,ptr 将指向位置 1004,因为 ptr 每增加一次,它都将指向下一个整数位置,即当前位置往后移 4 个字节。这个运算会在不影响内存位置中实际值的情况下,移动指针到下一个内存位置。如果 ptr 指向一个地址为 1000 的字符,上面的运算会导致指针指向位置 1001,因为下一个字符位置是在 1001。

#include <stdio.h>

const int MAX = 3;

int main() {
    int var[] = {10, 100, 200};
    int i, *ptr;

    /* 指针中的数组地址 */
    ptr = var;
    for (i = 0; i < MAX; i++) {

        printf("存储地址:var[%d] = %x\n", i, ptr);
        printf("存储值:var[%d] = %d\n", i, *ptr);

        /* 移动到下一个位置 */
        ptr++;
    }
    return 0;
}

指针的比较

指针可以用关系运算符进行比较,如 ==、< 和 >。如果 p1 和 p2 指向两个相关的变量,比如同一个数组中的不同元素,则可对 p1 和 p2 进行大小比较。

下面的程序修改了上面的实例,只要变量指针所指向的地址小于或等于数组的最后一个元素的地址 &var[MAX - 1],则把变量指针进行递增:

#include <stdio.h>

const int MAX = 3;

int main() {
    int var[] = {10, 100, 200};
    int i, *ptr;

    /* 指针中第一个元素的地址 */
    ptr = var;
    i = 0;
    while (ptr <= &var[MAX - 1]) {

        printf("Address of var[%d] = %x\n", i, ptr);
        printf("Value of var[%d] = %d\n", i, *ptr);

        /* 指向上一个位置 */
        ptr++;
        i++;
    }
    return 0;
}

C 结构体

C 数组允许定义可存储相同类型数据项的变量,结构是 C 编程中另一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。

结构用于表示一条记录,假设您想要跟踪图书馆中书本的动态,您可能需要跟踪每本书的下列属性:

  • Title
  • Author
  • Subject
  • Book ID

定义结构

为了定义结构,您必须使用 struct 语句。struct 语句定义了一个包含多个成员的新的数据类型,struct 语句的格式如下:

struct [structure tag]
{
   member definition;
   member definition;
   ...
   member definition;
} [one or more structure variables];

实例:

struct Books
{
   char  title[50];
   char  author[50];
   char  subject[100];
   int   book_id;
} book;

访问结构成员

为了访问结构的成员,我们使用成员访问运算符(.)。成员访问运算符是结构变量名称和我们要访问的结构成员之间的一个句号。您可以使用 struct 关键字来定义结构类型的变量。下面的实例演示了结构的用法:

#include <stdio.h>
#include <string.h>

struct Books {
    char title[50];
    char author[50];
    char subject[100];
    int book_id;
};

int main() {
    struct Books Book1;        /* 声明 Book1,类型为 Book */
    struct Books Book2;        /* 声明 Book2,类型为 Book */

    /* Book1 详述 */
    strcpy(Book1.title, "C Programming");
    strcpy(Book1.author, "Nuha Ali");
    strcpy(Book1.subject, "C Programming Tutorial");
    Book1.book_id = 6495407;

    /* Book2 详述 */
    strcpy(Book2.title, "Telecom Billing");
    strcpy(Book2.author, "Zara Ali");
    strcpy(Book2.subject, "Telecom Billing Tutorial");
    Book2.book_id = 6495700;

    /* 输出 Book1 信息 */
    printf("Book 1 title : %s\n", Book1.title);
    printf("Book 1 author : %s\n", Book1.author);
    printf("Book 1 subject : %s\n", Book1.subject);
    printf("Book 1 book_id : %d\n", Book1.book_id);

    /* 输出 Book2 信息 */
    printf("Book 2 title : %s\n", Book2.title);
    printf("Book 2 author : %s\n", Book2.author);
    printf("Book 2 subject : %s\n", Book2.subject);
    printf("Book 2 book_id : %d\n", Book2.book_id);

    return 0;
}

指向结构的指针

您可以定义指向结构的指针,方式与定义指向其他类型变量的指针相似,如下所示:

struct Books *struct_pointer;

现在,您可以在上述定义的指针变量中存储结构变量的地址。为了查找结构变量的地址,请把 & 运算符放在结构名称的前面,如下所示:

struct_pointer = &Book1;

为了使用指向该结构的指针访问结构的成员,您必须使用 -> 运算符,如下所示:

struct_pointer->title;

让我们使用结构指针来重写上面的实例,这将有助于您理解结构指针的概念:

© 著作权归作者所有

marjey
粉丝 3
博文 173
码字总数 139219
作品 0
昆明
私信 提问
PostgreSQL 共享缓存代码分析交流讲座

PostgreSQL 共享缓存代码分析交流讲座 方式:在线交流,使用QQ群语音。 时间:2013年12月17日晚8点开始。 交流之前,如果有如下准备更佳: 1、PostgreSQL v9.3.2源代码(或者9.0及更高版本,...

有理想的猪
2013/12/12
260
1
PostgreSQL 共享缓存代码分析交流讲座

PostgreSQL 共享缓存代码分析交流讲座 方式:在线交流,使用QQ群语音。 时间:2013年12月17日晚8点开始。 交流之前,如果有如下准备更佳: 1、PostgreSQL v9.3.2源代码(或者9.0及更高版本,...

有理想的猪
2013/12/12
6
0
50行代码实现简单网站服务器?

本系列教程将和您一起探讨如何利用Java语言一步一步实现自己的web服务器。 1 需求描述 第1讲我们要实现的效果是:当我们在浏览器的地址栏输入localhost:8080的时候,我们会看到"hello,this i...

算法与编程之美
2017/03/07
777
3
欢迎加入我的知识星球:C语言解惑课堂 - 知乎

我在知识星球上开通了一个有关C语言基础答疑解惑的星球,它叫做:“C语言解惑课堂”。看这名字你就知道虽然有点俗,俗才贴近你的真正需求嘛!这是一个专门帮助C语言初学者答疑解惑的课堂。嗯...

C语言编程答疑
前天
0
0
计算机技术与软件专业技术资格(水平)考试

关于北京地区2017年度计算机技术与软件专业技术资格(水平)考试有关问题的通知 京人考发〔2017〕14号 2017年3月13日 各有关单位:   根据原北京市人事局、原北京市信息化工作办公室《关于...

杰1992
2017/06/23
0
0

没有更多内容

加载失败,请刷新页面

加载更多

3_数组

3_数组

行者终成事
今天
7
0
经典系统设计面试题解析:如何设计TinyURL(二)

原文链接:https://www.educative.io/courses/grokking-the-system-design-interview/m2ygV4E81AR 编者注:本文以一道经典的系统设计面试题:《如何设计TinyURL》的参考答案和解析为例,帮助...

APEMESH
今天
7
0
使用logstash同步MySQL数据到ES

概述   在生成业务常有将MySQL数据同步到ES的需求,如果需要很高的定制化,往往需要开发同步程序用于处理数据。但没有特殊业务需求,官方提供的logstash就很有优势了。   在使用logstas...

zxiaofan666
今天
10
0
X-MSG-IM-分布式信令跟踪能力

经过一周多的鏖战, X-MSG-IM的分布式信令跟踪能力已基本具备, 特点是: 实时. 只有要RX/TX就会实时产生信令跟踪事件, 先入kafka, 再入influxdb待查. 同时提供实时sub/pub接口. 完备. 可以完整...

dev5
今天
7
0
OpenJDK之CyclicBarrier

OpenJDK8,本人看的是openJDK。以前就看过,只是经常忘记,所以记录下 图1 CyclicBarrier是Doug Lea在JDK1.5中引入的,作用就不详细描述了,主要有如下俩个方法使用: await()方法,如果当前线...

克虏伯
今天
8
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部