文档章节

在Ignite中使用k-均值聚类算法

李玉珏
 李玉珏
发布于 12/03 19:49
字数 1398
阅读 113
收藏 1

在本系列前面的文章中,简单介绍了一下Ignite的k-最近邻(k-NN)分类算法,下面会尝试另一个机器学习算法,即使用泰坦尼克数据集介绍k-均值聚类算法。正好,Kaggle提供了CSV格式的数据集,而要分析的是两个分类:即乘客是否幸存。

为了将数据转换为Ignite支持的格式,前期需要做一些清理和格式化的工作,CSV文件中包含若干个列,如下:

  • 乘客Id
  • 幸存(0:否,1:是)
  • 船票席别(1:一,2:二,3:三)
  • 乘客姓名
  • 性别
  • 年龄
  • 泰坦尼克号上的兄弟/姐妹数
  • 泰坦尼克号上的父母/子女数
  • 船票号码
  • 票价
  • 客舱号码
  • 登船港口(C=瑟堡,Q=皇后镇,S=南安普顿)

因此首先要做的是,删除任何和特定乘客有关的、和生存无关的列,如下:

  • 乘客Id
  • 乘客姓名
  • 船票号码
  • 客舱号码

接下来会删除任何数据有缺失的行,比如年龄或者登船港口,可以对这些值进行归类,但是为了进行初步的分析,会删除缺失的值。

最后会将部分字段转换为数值类型,比如性别会被转换为:

  • 0:女
  • 1:男

登船港口会被转换为:

  • 0:Q(皇后镇)
  • 1:C(瑟堡)
  • 2:S(南安普顿)

最终的数据集由如下的列组成:

  • 船票席别
  • 性别
  • 年龄
  • 泰坦尼克号上的兄弟/姐妹数
  • 泰坦尼克号上的父母/子女数
  • 票价
  • 登船港口
  • 幸存

可以看到,幸存列已被移到最后。

下一步会将数据拆分为训练数据(80%)和测试数据(20%),和前文一样,还是使用Scikit-learn来执行这个拆分任务。

准备好训练和测试数据后,就可以编写应用了,本文的算法是:

  1. 读取训练数据和测试数据;
  2. 在Ignite中保存训练数据和测试数据;
  3. 使用训练数据拟合k-均值聚类模型;
  4. 将模型应用于测试数据;
  5. 确定含混矩阵和模型的准确性。

读取训练数据和测试数据

通过下面的代码,可以从CSV文件中读取数据:

private static void loadData(String fileName, IgniteCache<Integer, TitanicObservation> cache)
        throws FileNotFoundException {

   Scanner scanner = new Scanner(new File(fileName));

   int cnt = 0;
   while (scanner.hasNextLine()) {
      String row = scanner.nextLine();
      String[] cells = row.split(",");
      double[] features = new double[cells.length - 1];

      for (int i = 0; i < cells.length - 1; i++)
         features[i] = Double.valueOf(cells[i]);
      double survivedClass = Double.valueOf(cells[cells.length - 1]);

      cache.put(cnt++, new TitanicObservation(features, survivedClass));
   }
}

该代码简单地一行行的读取数据,然后对于每一行,使用CSV的分隔符拆分出字段,每个字段之后将转换成double类型并且存入Ignite。

将训练数据和测试数据存入Ignite

前面的代码将数据存入Ignite,要使用这个代码,首先要创建Ignite存储,如下:

IgniteCache<Integer, TitanicObservation> trainData = getCache(ignite, "TITANIC_TRAIN");
IgniteCache<Integer, TitanicObservation> testData = getCache(ignite, "TITANIC_TEST");
loadData("src/main/resources/titanic-train.csv", trainData);
loadData("src/main/resources/titanic-test.csv", testData);

getCache()的实现如下:

private static IgniteCache<Integer, TitanicObservation> getCache(Ignite ignite, String cacheName) {

   CacheConfiguration<Integer, TitanicObservation> cacheConfiguration = new CacheConfiguration<>();
   cacheConfiguration.setName(cacheName);
   cacheConfiguration.setAffinity(new RendezvousAffinityFunction(false, 10));

   IgniteCache<Integer, TitanicObservation> cache = ignite.createCache(cacheConfiguration);

   return cache;
}

使用训练数据拟合k-NN分类模型

数据存储之后,可以像下面这样创建训练器:

KMeansTrainer trainer = new KMeansTrainer()
        .withK(2)
        .withDistance(new EuclideanDistance())
        .withSeed(123L);

这里k的值配置为2,表示有2个簇(幸存和未幸存),对于距离测量,可以有多个选择,比如欧几里得、海明或曼哈顿,在本例中会使用欧几里得,另外,种子值赋值为123。

然后拟合训练数据,如下:

KMeansModel mdl = trainer.fit(
        ignite,
        trainData,
        (k, v) -> v.getFeatures(),        
// Feature extractor.

        (k, v) -> v.getSurvivedClass()    
// Label extractor.

);

Ignite将数据保存为键-值(K-V)格式,因此上面的代码使用了值部分,目标值是Survived类,特征在其它列中。

将模型应用于测试数据

下一步,就可以用训练好的分类模型测试测试数据了,可以这样做:

int amountOfErrors = 0;
int totalAmount = 0;
int[][] confusionMtx = {{0, 0}, {0, 0}};

try (QueryCursor<Cache.Entry<Integer, TitanicObservation>> cursor = testData.query(new ScanQuery<>())) {
   for (Cache.Entry<Integer, TitanicObservation> testEntry : cursor) {
      TitanicObservation observation = testEntry.getValue();

      double groundTruth = observation.getSurvivedClass();
      double prediction = mdl.apply(new DenseLocalOnHeapVector(observation.getFeatures()));

      totalAmount++;
      if ((int) groundTruth != (int) prediction)
         amountOfErrors++;

      int idx1 = (int) prediction;
      int idx2 = (int) groundTruth;

      confusionMtx[idx1][idx2]++;

      System.out.printf(">>> | %.4f\t | %.0f\t\t\t|\n", prediction, groundTruth);
   }
}

确定含混矩阵和模型的准确性

下面,就可以通过对测试数据中的真实分类和模型进行的分类进行对比,来确认模型的真确性。

代码运行之后,输出如下:

>>> Absolute amount of errors 56

>>> Accuracy 0.6084

>>> Precision 0.5865

>>> Recall 0.9873

>>> Confusion matrix is [[78, 55], [1, 9]]

这个初步的结果可不可以改进?可以尝试的是对特征的衡量,在Ignite和Scikit-learn中,可以使用MinMaxScaler(),然后会给出如下的输出:

>>> Absolute amount of errors 29

>>> Accuracy 0.7972

>>> Precision 0.8205

>>> Recall 0.8101

>>> Confusion matrix is [[64, 14], [15, 50]]

作为进一步分析的一部分,还应该研究幸存与否和年龄和性别之间的关系。

总结

通常来说,k-均值聚类并不适合监督学习任务,但是如果分类很容易,这个方法还是有效的。对于本例来说,关注的就是是否幸存。

© 著作权归作者所有

共有 人打赏支持
李玉珏

李玉珏

粉丝 304
博文 66
码字总数 110992
作品 0
沈阳
技术主管
私信 提问
在Ignite中使用线性回归算法

在本系列前面的文章中,简单介绍了一下Ignite的机器学习网格,下面会趁热打铁,结合一些示例,深入介绍Ignite支持的一些机器学习算法。 如果要找合适的数据集,会发现可用的有很多,但是对于...

李玉珏
11/22
0
0
Apache Ignite 2.5.0 版本发布,千级节点伸缩性

Apache Ignite 2.5: 千级节点伸缩性 Apache Ignite的用户通常知道的两个关键点是-扩展性和性能。在很多分布式系统的整个生命周期中,通常会不停地改进性能,而对扩展性相关的改进次数,会比较...

李玉珏
06/01
1K
10
在Ignite中使用k-最近邻(k-NN)分类算法

在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类。该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成...

李玉珏
11/28
0
0
全面对比,深度解析 Ignite 与 Spark

经常有人拿 Ignite 和 Spark 进行比较,然后搞不清两者的区别和联系。Ignite 和 Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且 Ignite 也会对 Spark 进行支...

编辑部的故事
09/13
0
0
内存数据组织 - Apache Ignite

1.Ignite是什么? Apache Ignite是一个以内存为中心的分布式数据库、缓存和处理平台,支持事务、分析以及流式负载,可以在PB级数据上享有内存级的性能。 1.1.Ignite定位 Ignite是不是内存数据...

匿名
2015/01/10
0
8

没有更多内容

加载失败,请刷新页面

加载更多

Libusb交叉编译和移植

  Libusb交叉编译和移植      某项目内核需要支持USB的相关操作,所以考虑移植Libusb库      1、到官网下载最新的libusb源码(1.0.22)      2、解压源码      3、进入解压...

SEOwhywhy
7分钟前
1
0
阿里云HBase全新发布X-Pack NoSQL数据库再上新台阶

一、八年双十一,造就国内最大最专业HBase技术团队 阿里巴巴集团早在2010开始研究并把HBase投入生产环境使用,从最初的淘宝历史交易记录,到蚂蚁安全风控数据存储。持续8年的投入,历经8年双...

阿里云云栖社区
10分钟前
1
0
【58沈剑 架构师之路】数据库索引,到底是什么做的?

问题1. 数据库为什么要设计索引? 图书馆存了1000W本图书,要从中找到《架构师之路》,一本本查,要查到什么时候去? 于是,图书管理员设计了一套规则: (1)一楼放历史类,二楼放文学类,三楼...

张锦飞
10分钟前
1
0
android webpage err_unknown_url_scheme

搞一个 Android 的webview demo 来访问网页, 结果 模拟器就报错了: webpage err_unknown_url_scheme 于是去百度了 一下。发现挺多解决方案的,都拿来试试。居然有几种方式都可以。 1, 参考...

之渊
13分钟前
1
0
JVM总结

区域简介 JVM运行时区域有些随着虚拟机进程的启动而存在,有些依赖于用户线程的启动和结束而建立和销毁,大致分为以下几类:方法区,虚拟机栈,本地方法栈,堆,程序计数器,概念图如下(源于...

瑞查德-Jack
14分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部