文档章节

mysql处理海量数据时的一些优化查询速度方法

五大三粗
 五大三粗
发布于 2015/04/25 12:52
字数 2135
阅读 27
收藏 0
点赞 0
评论 0

由于在参与的实际项目中发现当mysql表的数据量达到百万级时,普通SQL查询效率呈直线下降,而且如果where中的查询条件较多时,其查询速 度简直无法容忍。曾经测试对一个包含400多万条记录(有索引)的表执行一条条件查询,其查询时间竟然高达40几秒,相信这么高的查询延时,任何用户都会 抓狂。因此如何提高sql语句查询效率,显得十分重要。以下是网上流传比较广泛的30种SQL查询语句优化方法:

 

 1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

 2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

 3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
     select id from t where num is null
     可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
     select id from t where num=0

 4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
     select id from t where num=10 or num=20
     可以这样查询:
     select id from t where num=10
     union all
     select id from t where num=20

 5、下面的查询也将导致全表扫描:(不能前置百分号)
     select id from t where name like ‘�c%’
    若要提高效率,可以考虑全文检索。

 6、in 和 not in 也要慎用,否则会导致全表扫描,如:
     select id from t where num in(1,2,3)
     对于连续的数值,能用 between 就不要用 in 了:
     select id from t where num between 1 and 3

 7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
     select id from t where num=@num
     可以改为强制查询使用索引:
     select id from t with(index(索引名)) where num=@num

 8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
     select id from t where num/2=100
     应改为:
     select id from t where num=100*2

 9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
     select id from t where substring(name,1,3)=’abc’–name以abc开头的id
     select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
     应改为:
     select id from t where name like ‘abc%’
     select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′

 10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

 11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。

 12、不要写一些没有意义的查询,如需要生成一个空表结构:
     select col1,col2 into #t from t where 1=0
     这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
     create table #t(…)

 13、很多时候用 exists 代替 in 是一个好的选择:
     select num from a where num in(select num from b)
     用下面的语句替换:
     select num from a where exists(select 1 from b where num=a.num)

 14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

 15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

 16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

 17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

 18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

 19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

 20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

 21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

 22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。

 23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

 24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

 25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

 26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

 27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游 标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

 28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

 29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

 30、尽量避免大事务操作,提高系统并发能力。

© 著作权归作者所有

共有 人打赏支持
五大三粗
粉丝 156
博文 2211
码字总数 4560008
作品 0
广州
程序员
海量数据处理汇总

1. 海量数据处理分析 (作者 北京迈思奇科技有限公司 戴子良) 原文地址: http://blog.csdn.net/DaiZiLiang/archive/2006/12/06/1432193.aspx 笔者在实际工作中,有幸接触到海量的数据处理问...

唐玄奘
2017/12/03
0
0
mysql 优化建议(转)

ysql处理海量数据时的一些优化查询速度方法 最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法。 由于在参与的实际项目中发现当mysql表的数据量达到百万级时...

小小人故事
2015/12/06
29
2
浅谈MySQL数据库优化

一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前...

wangergui
2017/03/15
0
0
高手问答第 171 期 — 海量数据环境下,MySQL 该如何应对?

OSCHINA 本期高手问答(2017 年 9 月 20 日 — 9 月 26 日)我们请来了@叶金荣 和@吴炳锡为大家解答 MySQL 如何应对海量数据方面的问题。 叶金荣,知数堂培训联合创始人,Oracle MySQL ACE,...

局长
2017/09/19
5.4K
50
mySQL查询优化(四)

糟糕的SQL查询语句可对整个应用程序的运行产生严重的影响,其不仅消耗掉更多的数据库时间,且它将对其他应用组件产生影响。   如同其它学科,优化查询性能很大程度上决定于开发者的直觉。幸...

落叶刀
2016/06/07
8
0
SQL优化大全心得

目录 作者整理:周海平(kider) 概要... 1 优化的理由... 2 1.大小写对SQL语句的影响(ORACLE)... 2 2.尽量使用(NOT) EXISTS 替代( NOT)IN这样的操作... 3 3.在海量查询时尽量少用格式转换....

sxm20074428
2014/05/09
0
0
如何处理海量数据【转】

在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面: 一、数据量过大,数据中什么情况都可能存在。 如果说有10条数据,那么大不了每条去逐一检查,...

HI曲奇饼干
2016/06/09
80
1
教你编写高性能的mysql语法

教你编写高性能的mysql语法 一、SQL语句查询 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提...

长平狐
2013/01/06
551
0
infobright: 系统结构

这里深入介绍其结构及工作原理。下图是infobright白皮书中展示的系统架构,灰色部分是mysql原有的模块,白色与蓝色部分则是 infobright自身的。下面说说它的几个主要概念及其相互协作原理。 ...

小编辑
2010/02/03
1K
0
划重点!必备 SQL 查询优化技巧,提升网站访问速度

来自:开源中国 协作翻译 链接:oschina.net/translate/sql-query-optimization 原文:https://deliciousbrains.com/sql-query-optimization/ 译者:南宫冰郁, rever4433, soaring, 凉凉_, ......

uzv80px5v412ne
01/02
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

MyBatis源码解读之延迟加载

1. 目的 本文主要解读MyBatis 延迟加载实现原理 2. 延迟加载如何使用 Setting 参数配置 设置参数 描述 有效值 默认值 lazyLoadingEnabled 延迟加载的全局开关。当开启时,所有关联对象都会延...

无忌
5分钟前
0
0
javascript 类变量的实现

代码如下: function echo(){ for(let i=0;i<arguments.length;i++) console.log(arguments[i]);}function extend(o, p){for (prop in p) {o[prop] = p[prop]}retur......

backbye
9分钟前
0
2
编程语言对比分析:Python与Java和JavaScript(图)

编程语言对比分析:Python与Java和JavaScript(图): 凭什么说“Python 太慢,Java 太笨拙,我讨厌 JavaScript”?[图] 编程语言生而为何? 我们人类从原始社会就是用语言表达自己,互相沟通...

原创小博客
17分钟前
0
0
Akka构建Reactive应用《one》

看到这Akka的官网,描述使用java或者scala构建响应式,并发和分布式应用更加简单,听着很高级的样子,下面的小字写着消息驱动,但是在quickstart里面又写容错事件驱动,就是这么钻牛角尖。 ...

woshixin
29分钟前
0
0
ffmpeg源码分析 (四)

io_open 承接上一篇,对于avformat_open_input的分析还差其中非常重要的一步,就是io_open,该函数用于打开FFmpeg的输入输出文件。 在init_input中有这么一句 if ((ret = s->io_open(s, &s-...

街角的小丑
31分钟前
0
0
String,StringBuffer ,StringBuilder的区别

不同点 一、基类不同 StringBuffer、StringBuilder 都继承自AbStractStringBuilder,String 直接继承自 Object 2、底层容器“不同” 虽然底层都是字符数组,但是String的是final修饰的不可变...

不开心的时候不要学习
46分钟前
0
0
nodejs 文件操作

写文件code // 加载文件模块var fs = require("fs");var content = 'Hello World, 你好世界!';//params 文件名,内容,编码,回调fs.writeFile('./hello.txt',content,'utf8',function (er......

yanhl
48分钟前
0
0
SpringBoot mybits 查询为0条数据 但是在Navicat 中可以查询到数据

1.页面请求: 数据库查询: 2018-07-16 17:56:25.054 DEBUG 17312 --- [nio-9010-exec-3] c.s.h.m.C.selectSelective : ==> Preparing: select id, card_number, customer_id, customer_nam......

kuchawyz
58分钟前
0
0
译:Self-Modifying cod 和cacheflush

date: 2014-11-26 09:53 翻译自: http://community.arm.com/groups/processors/blog/2010/02/17/caches-and-self-modifying-code Cache处在CPU核心与内存存储器之间,它给我们的感觉是,它具......

我叫半桶水
今天
0
0
Artificial Intelligence Yourself

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流...

孟飞阳
今天
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部