文档章节

Python 数据分析包:pandas 基础

lionets
 lionets
发布于 2014/06/10 22:01
字数 4377
阅读 58997
收藏 41
点赞 9
评论 5

pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包

类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:

lang:python
from pandas import Series,DataFrame
import pandas as pd

<br /> #Series --- Series 可以看做一个**定长的有序字典**。基本任意的一维数据都可以用来构造 Series 对象:

lang:python
>>> s = Series([1,2,3.0,'abc'])
>>> s
0      1
1      2
2      3
3    abc
dtype: object

虽然 dtype:object 可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。

Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:

lang:python
>>> s = Series(data=[1,3,5,7],index = ['a','b','x','y'])
>>> s
a    1
b    3
x    5
y    7
dtype: int64
>>> s.index
Index(['a', 'b', 'x', 'y'], dtype='object')
>>> s.values
array([1, 3, 5, 7], dtype=int64)

Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。

注意 Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。

Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。

另外,Series 对象和它的 index 都含有一个 name 属性:

lang:python
>>> s.name = 'a_series'
>>> s.index.name = 'the_index'
>>> s
the_index
a            1
b            3
x            5
y            7
Name: a_series, dtype: int64

<br /> #DataFrame --- DataFrame 是一个**表格**型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。

DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:

lang:python
>>> data = {'state':['Ohino','Ohino','Ohino','Nevada','Nevada'],
        'year':[2000,2001,2002,2001,2002],
        'pop':[1.5,1.7,3.6,2.4,2.9]}
>>> df = DataFrame(data)
>>> df
   pop   state  year
0  1.5   Ohino  2000
1  1.7   Ohino  2001
2  3.6   Ohino  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

[5 rows x 3 columns]

虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 "01234"。

完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None),columns 即 “name”:

lang:python
>>> df = DataFrame(data,index=['one','two','three','four','five'],
               columns=['year','state','pop','debt'])
>>> df
       year   state  pop debt
one    2000   Ohino  1.5  NaN
two    2001   Ohino  1.7  NaN
three  2002   Ohino  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN

[5 rows x 4 columns]

同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:

lang:python
>>> df.index
Index(['one', 'two', 'three', 'four', 'five'], dtype='object')
>>> df.columns
Index(['year', 'state', 'pop', 'debt'], dtype='object')
>>> type(df['debt'])
<class 'pandas.core.series.Series'>

DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。 <br /> #对象属性

###查找索引 查找某个值在数组中的索引,类似于 Python 内建的 list.index(value) 方法。可以通过布尔索引来实现。比如我们想在一个 Series 中寻找到 ‘c’:

lang:python
>>> ser = Series(list('abcdefg'))
>>> ser[ser='c']
2	c
dtype: object

Series 中还有一对 ser.idxmax()ser.idxmin() 方法,可以返回数组中最大(小)值的索引值,或者 .argmin().argmax() 返回索引位置。当然这两类方法也是可以通过上面这种 ser[ser=ser.max()] 来替代实现的。 <br /> ###修改索引 数组的 index 属性时不可变的,因此所谓修改索引,其实操作的是一个使用了新索引的新数组,并继承旧数据。

obj.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 方法接受一个新索引(key)并返回一个新数组。这个 key 的值可以是序列类型,也可以是调用者的一个列名,即将某一列设为新数组的索引。

lang:python
>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index('column1')

<br /> ###重新索引 Series 对象的重新索引通过其 `.reindex(index=None,**kwargs)` 方法实现。`**kwargs` 中常用的参数有俩:`method=None,fill_value=np.NaN`:

lang:python
ser = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c'])
>>> a = ['a','b','c','d','e']
>>> ser.reindex(a)
a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64
>>> ser.reindex(a,fill_value=0)
a   -5.3
b    7.2
c    3.6
d    4.5
e    0.0
dtype: float64
>>> ser.reindex(a,method='ffill')
a   -5.3
b    7.2
c    3.6
d    4.5
e    4.5
dtype: float64
>>> ser.reindex(a,fill_value=0,method='ffill')
a   -5.3
b    7.2
c    3.6
d    4.5
e    4.5
dtype: float64

.reindex() 方法会返回一个新对象,其 index 严格遵循给出的参数,method:{'backfill', 'bfill', 'pad', 'ffill', None} 参数用于指定插值(填充)方式,当没有给出时,自动用 fill_value 填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)

DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,**kwargs)。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法 method 参数只能应用于,即轴 0。

lang:python
>>> state = ['Texas','Utha','California']
>>> df.reindex(columns=state,method='ffill')
	Texas  Utha  California
a      1   NaN           2
c      4   NaN           5	
d      7   NaN           8

[3 rows x 3 columns]
>>> df.reindex(index=['a','b','c','d'],columns=state,method='ffill')
   Texas  Utha  California
a      1   NaN           2
b      1   NaN           2
c      4   NaN           5
d      7   NaN           8

[4 rows x 3 columns]

不过 fill_value 依然对有效。聪明的小伙伴可能已经想到了,可不可以通过 df.T.reindex(index,method='**').T 这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用 reindex(index,method='**') 的时候,index 必须是单调的,否则就会引发一个 ValueError: Must be monotonic for forward fill,比如上例中的最后一次调用,如果使用 index=['a','b','d','c'] 的话就不行。 <br /> ###删除指定轴上的项 即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的 .drop(labels, axis=0) 方法:

lang:python
>>> ser
d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64
>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> ser.drop('c')
d    4.5
b    7.2
a   -5.3
dtype: float64
>>> df.drop('a')
   Ohio  Texas  California
c     3      4           5
d     6      7           8

[2 rows x 3 columns]
>>> df.drop(['Ohio','Texas'],axis=1)
   California
a           2
c           5
d           8

[3 rows x 1 columns]

.drop() 返回的是一个新对象,元对象不会被改变。 <br /> ###索引和切片 就像 Numpy,pandas 也支持通过 obj[::] 的方式进行索引和切片,以及通过布尔型数组进行过滤。

不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。

lang:python
>>> foo
a    4.5
b    7.2
c   -5.3
d    3.6
dtype: float64
>>> bar
0    4.5
1    7.2
2   -5.3
3    3.6
dtype: float64
>>> foo[:2]
a    4.5
b    7.2
dtype: float64
>>> bar[:2]
0    4.5
1    7.2
dtype: float64
>>> foo[:'c']
a    4.5
b    7.2
c   -5.3
dtype: float64

这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'c' 这样的字符串索引时,结果就包含了这个边界元素。

另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。

可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:

lang:python
>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.ix[:2,:2]
   Ohio  Texas
a     0      1
c     3      4

[2 rows x 2 columns]
>>> df.ix['a','Ohio']
0

而不使用 ix ,直接切的情况就特殊了:

  • 索引时,选取的是列
  • 切片时,选取的是行

这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。

lang:python
>>> df['Ohio']
a    0
c    3
d    6
Name: Ohio, dtype: int32
>>> df[:'c']
   Ohio  Texas  California
a     0      1           2
c     3      4           5

[2 rows x 3 columns]
>>> df[:2]
   Ohio  Texas  California
a     0      1           2
c     3      4           5

[2 rows x 3 columns]

还有一种特殊情况是:假如有这样一个索引 index([2,4,5]) ,当我们使用 ser[2] 索引的时候,到底会被解释为第一个索引还是第三个索引呢?

答案是第一个索引,即当你的数组 index 是整数类型的时候,你使用整数索引,都会被自动解释为基于标签的索引,而不是基于位置的索引。要想消除这种歧义,可以使用

  • .loc[label] 这是严格基于标签的索引
  • .iloc[inte] 这是严格基于整数位置的索引

.ix[] 更像是这两种严格方式的智能整合版。

使用布尔型数组的情况,注意行与列的不同切法(列切法的 : 不能省):

lang:python
>>> df['Texas']>=4
a    False
c     True
d     True
Name: Texas, dtype: bool
>>> df[df['Texas']>=4]
   Ohio  Texas  California
c     3      4           5
d     6      7           8

[2 rows x 3 columns]
>>> df.ix[:,df.ix['c']>=4]
   Texas  California
a      1           2
c      4           5
d      7           8

[3 rows x 2 columns]

<br /> ###算术运算和数据对齐 pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的**并集**。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。

lang:python
>>> foo = Series({'a':1,'b':2})
>>> foo
a    1
b    2
dtype: int64
>>> bar = Series({'b':3,'d':4})
>>> bar
b    3
d    4
dtype: int64
>>> foo + bar
a   NaN
b     5
d   NaN
dtype: float64

DataFrame 的对齐操作会同时发生在行和列上。

当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value 参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)。其他算术方法还有:sub(), div(), mul()

Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。 <br /> ###函数应用和映射 Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。

当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds) 方法。

lang:python
f = lambda x:x.max()-x.min()
>>> df
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.apply(f)
Ohio          6
Texas         6
California    6
dtype: int64
>>> df.apply(f,axis=1)
a    2
c    2
d    2
dtype: int64

<br /> ###排序和排名 Series 的 `sort_index(ascending=True)` 方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。

若要按值对 Series 进行排序,当使用 .order(na_last=True, ascending=True, kind='mergesort') 方法,任何缺失值默认都会被放到 Series 的末尾。

在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True) 方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)进行排序(不能对行使用 by 参数):

lang:python
>>> df.sort_index(by='Ohio')
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.sort_index(by=['California','Texas'])
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

[3 rows x 3 columns]
>>> df.sort_index(axis=1)
   California  Ohio  Texas
a           2     0      1
c           5     3      4
d           8     6      7

[3 rows x 3 columns]

排名(Series.rank(method='average', ascending=True))的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method 参数就是起这个作用的,他有四个值可选:average, min, max, first

lang:python
>>> ser=Series([3,2,0,3],index=list('abcd'))
>>> ser
a    3
b    2
c    0
d    3
dtype: int64
>>> ser.rank()
a    3.5
b    2.0
c    1.0
d    3.5
dtype: float64
>>> ser.rank(method='min')
a    3
b    2
c    1
d    3
dtype: float64
>>> ser.rank(method='max')
a    4
b    2
c    1
d    4
dtype: float64
>>> ser.rank(method='first')
a    3
b    2
c    1
d    4
dtype: float64

注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。

DataFrame 的 .rank(axis=0, method='average', ascending=True) 方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。 <br /> ###统计方法 pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。

比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:

lang:python
>>> df
    one  two
a  1.40  NaN
b  7.10 -4.5
c   NaN  NaN
d  0.75 -1.3

[4 rows x 2 columns]
>>> df.mean()
one    3.083333
two   -2.900000
dtype: float64
>>> df.mean(axis=1)
a    1.400
b    1.300
c      NaN
d   -0.275
dtype: float64
>>> df.mean(axis=1,skipna=False)
a      NaN
b    1.300
c      NaN
d   -0.275
dtype: float64

其他常用的统计方法有: <br />

<table style="font-size:14px"> <tr> <td>########################</td> <td>*******************************************</td> </tr> <tr> <td>count</td> <td>非 NA 值的数量</td> </tr> <tr> <td>describe</td> <td>针对 Series 或 DF 的列计算汇总统计</td> </tr> <tr> <td>min , max</td> <td>最小值和最大值</td> </tr> <tr> <td>argmin , argmax</td> <td>最小值和最大值的索引位置(整数)</td> </tr> <tr> <td>idxmin , idxmax</td> <td>最小值和最大值的索引值</td> </tr> <tr> <td>quantile</td> <td>样本分位数(0 到 1)</td> </tr> <tr> <td>sum</td> <td>求和</td> </tr> <tr> <td>mean</td> <td>均值</td> </tr> <tr> <td>median</td> <td>中位数</td> </tr> <tr> <td>mad</td> <td>根据均值计算平均绝对离差</td> </tr> <tr> <td>var</td> <td>方差</td> </tr> <tr> <td>std</td> <td>标准差</td> </tr> <tr> <td>skew</td> <td>样本值的偏度(三阶矩)</td> </tr> <tr> <td>kurt</td> <td>样本值的峰度(四阶矩)</td> </tr> <tr> <td>cumsum</td> <td>样本值的累计和</td> </tr> <tr> <td>cummin , cummax</td> <td>样本值的累计最大值和累计最小值</td> </tr> <tr> <td>cumprod</td> <td>样本值的累计积</td> </tr> <tr> <td>diff</td> <td>计算一阶差分(对时间序列很有用)</td> </tr> <tr> <td>pct_change</td> <td>计算百分数变化</td> </tr> </table> <br /> ###协方差与相关系数 Series 有两个方法可以计算协方差与相关系数,方法的主要参数都是另一个 Series。DataFrame 的这两个方法会对**列**进行两两运算,并返回一个 len(columns) 大小的方阵:

  • .corr(other, method='pearson', min_periods=1) 相关系数,默认皮尔森
  • .cov(other, min_periods=None) 协方差

min_periods 参数为样本量的下限,低于此值的不进行运算。 <br /> ###列与 Index 间的转换 DataFrame 的 .set_index(keys, drop=True, append=False, verify_integrity=False) 方法会将其一个或多个列转换为行索引,并返回一个新对象。默认 drop=True 表示转换后会删除那些已经变成行索引的列。另一个 .reset_index() 方法的作用正相反,会把已经层次化的索引转换回列里面。

lang:python
>>> df = DataFrame(np.arange(8).reshape(4,2),columns=['a','b'])
>>> df
   a  b
0  0  1
1  2  3
2  4  5
3  6  7

[4 rows x 2 columns]
>>> df2 = df.set_index('a')
>>> df2
   b
a   
0  1
2  3
4  5
6  7

[4 rows x 1 columns]
>>> df2.reset_index()
   a  b
0  0  1
1  2  3
2  4  5
3  6  7

[4 rows x 2 columns]

<br /> #处理缺失数据 --- pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。

处理 NA 的方法有四种:dropna , fillna , isnull , notnull 。 <br /> ###is(not)null 这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。 <br /> ###dropna 对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。

问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how='any', thresh=None) ,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。

###fillna fillna(value=None, method=None, axis=0) 中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex() 方法相同,这里不再赘述。 <br /> #inplace 参数

前面有个点一直没讲,结果整篇示例写下来发现还挺重要的。就是 Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False 的可选参数。如果手动设定为 True,那么原数组就可以被替换。 <br /> #层次化索引

层次化索引(hierarchical indexing)是 pandas 的一项重要功能,它允许你在一个轴上拥有多个索引级别。换句话说,一个使用了层次化的索引的二维数组,可以存储和处理三维以上的数据。

lang:python
>>> hdf = DataFrame(np.arange(8).reshape(4,2),index=[['sh','sh','sz','sz'],['600000','600001','000001','000002']],columns=['open','close'])
>>> hdf
           open  close
sh 600000     0      1
   600001     2      3
sz 000001     4      5
   000002     6      7

[4 rows x 2 columns]
>>> hdf.index
MultiIndex(levels=[['sh', 'sz'], ['000001', '000002', '600000', '600001']],
           labels=[[0, 0, 1, 1], [2, 3, 0, 1]])

上例中原本 shsz 已经是第三维的索引了,但使用层次化索引后,可以将整个数据集控制在二维表结构中。这对于数据重塑和基于分组的操作(如生成透视表)比较重要。

索引或层次化索引对象(Index 与 MultiIndex)都有一个 names 属性,可以用来给索引层次命名,以便索引和增加直观性。对 names 属性的操作可以直接通过 obj.index.names=[] 的形式来实现。

© 著作权归作者所有

共有 人打赏支持
lionets
粉丝 90
博文 96
码字总数 131014
作品 0
朝阳
程序员
加载中

评论(5)

815088568
815088568
我的建议是写的时候前面加个大纲会不会好点,这样更明了一点。
Finlay
Finlay
copy的时候,也稍微删一下无关HTML标记
卜霞森
卜霞森
赞!
Michael翔
Michael翔
赞!
leader20
leader20
不错
入门数据分析,从python开始

Python是目前学习数据分析课程中,非常重要的一块,也是目前非常受行业欢迎的。因此,学习非常重要,下面是Python学习的一些重要步骤和知识! 步骤1:熟悉Python 对数据科学,Python和R都是不...

weixin_41852491 ⋅ 05/28 ⋅ 0

【python数据挖掘课程】二十三.时间序列金融数据预测及Pandas库详解

这是《Python数据挖掘课程》系列文章,也是我上课内容及书籍中的一个案例。本文主要讲述时间序列算法原理,Pandas扩展包基本用法以及Python调用statsmodels库的时间序列算法。由于作者数学比...

eastmount ⋅ 05/09 ⋅ 0

5本必读Python入门书籍,你都看过吗?(附福利)

今天技术学派为大家准备了5本Python入门书籍,除了书籍小编还整理了3个常用的资源网站分享给大家。 1.Python基础教程 《Python基础教程》是经典的Python入门教程书籍,本书层次鲜明,结构严谨...

Python燕大侠 ⋅ 06/07 ⋅ 0

Python发展迅速,成为学术界新主流

如果说2018年以前R是数据学术界的主流,但是现在Python正在慢慢取代R在学术界的地位。 Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转...

Python燕大侠 ⋅ 05/07 ⋅ 0

Python学习小白必备书籍以及源码下载、代码求助三大网站

Python小白开发入门必备的3本书籍,除了书籍小U还整理了5个程序员们常用的资源网站。 入门书籍一 《Python for data analysis》 这本书涵盖了ipython notebook、Numpy、Scipy和Pandas包的使用...

柯西带你学编程 ⋅ 05/30 ⋅ 0

荐书丨确认过眼神,这份Python书单一定是你的菜

点击上方“程序人生”,选择“置顶公众号” 第一时间关注程序猿(媛)身边的故事 Python 是军刀型的开源工具,被广泛应用于Web 开发、爬虫、数据清洗、自然语言处理、机器学习和人工智能等方...

csdnsevenn ⋅ 05/05 ⋅ 0

证券数据服务平台 - BaoStock

BaoStock 是一个免费、开源的证券数据服务平台。考虑到Python pandas包在金融量化分析中体现出的优势, BaoStock返回的绝大部分的数据格式都是pandas DataFrame类型,非常便于用pandas/NumP...

匿名 ⋅ 05/03 ⋅ 0

什么样的人学Python比别人快?Python的学习大纲有哪些?

什么样的人学Python比别人快? 为什么会是这些人?前两类大家应该都没什么意见,为什么最后两类会学得快?这两类说白了就一个关键词:转行!既然决定转行,有太多需要学习的东西,太多不适应...

帅帅程序员 ⋅ 04/28 ⋅ 0

从零开始用Python3做数据分析

点击关注 异步图书,置顶公众号 每天与你分享 IT好书 技术干货 职场知识 参与文末话题讨论,每日赠送异步图书 ——异步小编 欢迎来到Python数据分析的世界!如今,Python已成为数据分析和数据...

异步社区 ⋅ 05/19 ⋅ 0

一个月入门Python爬虫,快速获取大规模数据

数据是创造和决策的原材料,高质量的数据都价值不菲。而利用爬虫,我们可以获取大量的价值数据,经分析可以发挥巨大的价值,比如: 豆瓣、知乎:爬取优质答案,筛选出各话题下热门内容,探索...

Python开发者 ⋅ 04/25 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

CENTOS7防火墙命令记录

安装Firewall命令: yum install firewalld firewalld-config Firewall开启常见端口命令: firewall-cmd --zone=public --add-port=80/tcp --permanent firewall-cmd --zone=public --add-po......

cavion ⋅ 56分钟前 ⋅ 0

【C++】【STL】利用chromo来测量程序运行时间与日志时间打印精确到微秒

直接上代码吧,没啥好说的。头疼。 #include <iostream>#include <string>#include <ctime>#include <sstream>#include <iomanip>#include <thread>#include <chrono>using ......

muqiusangyang ⋅ 59分钟前 ⋅ 0

Mac环境下svn的使用

在Windows环境中,我们一般使用TortoiseSVN来搭建svn环境。在Mac环境下,由于Mac自带了svn的服务器端和客户端功能,所以我们可以在不装任何第三方软件的前提下使用svn功能,不过还需做一下简...

故久呵呵 ⋅ 今天 ⋅ 0

破解公司回应苹果“USB限制模式”:已攻破

本周四,苹果发表声明称 iOS 中加入了一项名为“USB 限制模式”的功能,可以防止 iPhone 在连接其他设备的时候被破解,并且强调这一功能并不是针对 FBI 等执法部门,为的是保护用户数据安全。...

六库科技 ⋅ 今天 ⋅ 0

MyBtais整合Spring Boot整合,TypeHandler对枚举类(enum)处理

概要 问题描述 我想用枚举类来表示用户当前状态,枚举类由 code 和 msg 组成,但我只想把 code 保存到数据库,查询处理,能知道用户当前状态,这应该怎么做呢?在 Spring 整合MyBatis 的时候...

Wenyi_Feng ⋅ 今天 ⋅ 0

synchronized与Lock的区别

# <center>王梦龙的读书笔记第一篇</center> ## <center>-synchronized与Lock的区别</centre> ###一、从使用场景来说 + synchronized 是能够注释代码块、类、方法但是它的加锁是和解锁使用一......

我不想加班 ⋅ 今天 ⋅ 0

VConsole的使用

手机端控制台打印输出,方便bug的排查。 首先需要引入vconsole.min.js 文件,然后在文件中创造实例。就能直接使用了。 var vConsole = new VConsole(); vConsole的文件地址...

大美琴 ⋅ 今天 ⋅ 0

Java NIO之字符集

1 字符集和编解码的概念 首先,解释一下什么是字符集。顾名思义,就是字符的集合。它的初衷是把现实世界的符号映射为计算机可以理解的字节。比如我创造一个字符集,叫做sex字符集,就包含两个...

士别三日 ⋅ 今天 ⋅ 0

Spring Bean基础

1、Bean之间引用 <!--如果Bean配置在同一个XML文件中,使用local引用--><ref bean="someBean"/><!--如果Bean配置在不同的XML文件中,使用ref引用--><ref local="someBean"/> 其实两种......

霍淇滨 ⋅ 今天 ⋅ 0

05、基于Consul+Upsync+Nginx实现动态负载均衡

1、Consul环境搭建 下载consul_0.7.5_linux_amd64.zip到/usr/local/src目录 cd /usr/local/srcwget https://releases.hashicorp.com/consul/0.7.5/consul_0.7.5_linux_amd64.zip 解压consu......

北岩 ⋅ 今天 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部